
Frequency distribution signatures and classification of within-
object pixels

Douglas A. Stow*, Sory I. Toure, Christopher D. Lippitt, Caitlin L. Lippitt, and Chung-rui Lee
Department of Geography, San Diego State University, 5500 Campanile Drive, San Diego, CA,
92182-4493, USA

Abstract
The premise of geographic object-based image analysis (GEOBIA) is that image objects are
composed of aggregates of pixels that correspond to earth surface features of interest. Most
commonly, image-derived objects (segments) or objects associated with predefined land units
(e.g., agricultural fields) are classified using parametric statistical characteristics (e.g., mean and
standard deviation) of the within-object pixels. The objective of this exploratory study was to
examine the between- and within-class variability of frequency distributions of multispectral pixel
values, and to evaluate a quantitative measure and classification rule that exploits the full pixel
frequency distribution of within object pixels (i.e., histogram signatures) compared to simple
parametric statistical characteristics. High spatial resolution Quickbird satellite multispectral data
of Accra, Ghana were evaluated in the context of mapping land cover and land use and
socioeconomic status. Results show that image objects associated with land cover and land use
types can have characteristic, non-normal frequency distributions (histograms). Signatures of most
image objects tended to match closely the training signature of a single class or sub-class. Curve
matching approaches to classifying multi-pixel frequency distributions were found to be slightly
more effective than standard statistical classifiers based on a nearest neighbor classifier.
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1. Introduction
The main premise of geographic object-based image analysis (GEOBIA) is that image
objects are composed of pixel groupings that correspond to earth surface features of interest
(Blaschke, 2009; Hay and Castilla, 2008.). For most implementations of GEOBIA, pixel
groups are first delineated through image segmentation (Burnett and Blaschke, 2003;
Schiewe, 2002) or extant field or land parcel boundaries, and then within-segment pixels are
classified in aggregate. Classification decisions are normally based on parametric statistical
measures of central tendency (e.g., mean or median) (Shackelford and Davis, 2003) and/or
dispersion (e.g., standard deviation or range) (Pedley and Curran, 1991) for within-segment
pixels. However, the frequency distributions of image brightness values for within-object
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pixels may be complex and not normally distributed, such that the mean and standard
deviation measures may not be effective or appropriate measures of central tendency or
dispersion.

The emphasis of this study is on the second phase of GEOBIA, the classification of multi-
pixel groups associated with an image object. The use of histogram curve matching
techniques to quantify the similarity between image objects is explored and compared to
traditional parametric descriptors. GEOBIA classification assumes that some form of object
delineation has already been performed. Delineation typically occurs through image
segmentation, for which a variety of approaches to forming image objects have been
developed (Dey et al., 2010; Haralick and Shapiro, 1985; Neubert et al., 2008). Field-based
image classification approaches utilize extent land boundary files such as agricultural field
or urban land ownership parcels, as the basis of object delineation. Per-field classification
approaches have been utilized for over three decades (Landgrebe, 1980; Mason et al., 1988),
however classification decisions are typically based on statistical characteristics of the
within-field pixels (Dean and Smith, 2003) or a per-pixel classification of the input
multispectral image data (Shandley et al., 1996; Woodcock and Harward, 1992). Berberoglu
et al. (2000) tested pixel- and per-field approaches to image classification and found that the
latter was more successful, by exploiting the variability in spatial frequencies of land cover
types. Even for segments/objects with normal distributions, using only mean and/or standard
deviation may not fully capture signatures of within-segment pixels (Lloyd et al., 2004).
Also, the shapes of image brightness histograms of within-object pixels for certain types of
land cover and land use classes may be characteristic or diagnostic (i.e., characteristic shape
signatures).

While we find no published work pertaining to the use of histogram curve matching
approaches to classifying image segments in the GEOBIA literature, similar approaches are
evident in computer vision and image understanding literature. Histogram matching is
commonly used for relative radiometric normalization of multi-temporal images (Coulter et
al., 2009) and for template matching for shape recognition in computer vision research
(Cheng and Chen, 2003; Zhang et al., 2006).

Curve matching techniques used for hyperspectral classification may be useful for
classification of within-segment pixel frequency distributions. Curve matching techniques
are used to measure spectral similarity between a known spectrum from a spectral library
with unknown image pixel/object spectra (Kruse et al., 1993; van der Meer, 2006) and may
be applicable to quantifying the similarity between histogram curves representing within-
object pixels.

The objectives of this study were to: (1) examine within- and between-class variability of
frequency distributions of multispectral DN values of within-segment pixels to determine if
within-class histogram curves are similar and between-class curves are separable, and (2)
evaluate a quantitative measure and classification approach that exploits characteristic
frequency distributions (i.e., histogram signatures) of within-segment pixels. The application
context for this evaluation is the classification and mapping of general land cover/land use
(LCLU) types and socio-economic status (SES) of residential areas within Accra, Ghana,
based on satellite multispectral image data having high spatial resolution. The goals of this
exploratory study are to assess whether LCLU types appear to have characteristic frequency
distribution signatures and subsequently, whether curve matching based on such frequency
distribution signatures hold promise for the classification phase of OBIA. We take a per-
field approach to this evaluation, by starting with the delineated polygon boundaries that
represent LCLU objects and then examine the frequency distributions of pixels belonging to
those objects.
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2. Study Area and Data
The study area is a portion of the Accra, Ghana metropolitan area, which is delineated in
Figure 1. Accra is the capital city of around two million people and has grown rapidly in the
last decade (Ghana Statistical Services, 2002). Our on-going studies of demographic and
health survey data attempt to integrate fine spatial resolution satellite data to assess spatial
variations in poverty and health within Accra, Ghana (Weeks et al., 2006; Weeks et al.,
2007). For studies of urban health, it is important to know where a city’s inhabitants reside,
and LCLU may be important for determining sources or vectors of disease. No
comprehensive or reliable source of LCLU data exists for Accra. A majority of Accra’s
inhabitants are poor and live in low SES neighborhoods, and there is a need to further
identify SES for LCLU polygons mapped as residential land use. The abundance of
vegetation cover and size of building structures indicate differences in SES of residential
areas (Lippitt et al., in press; Stow et al., 2007; Stow et al., 2010).

A general, five-category LCLU classification scheme is utilized in this study and is driven
by the applications context described previously. This classification scheme includes the
following LCLU classes: (1) Low Socio-economic (LSE) Residential, (2) High
Socioeconomic (HSE) Residential, (3) Urban Non-residential, (4) Urban Agriculture, and
(5) Forest/Natural Vegetation, as described in Table 1. Urban Non-residential is a highly
generalized class consisting of several built land use types and our application needs are
such that these individual LCLU types need not be identified and mapped as separate
categories. While this simplifies the classification scheme and mapping, these various LCLU
subclasses can have unique brightness histogram signatures that should be represented
separately in the training and curve matching phases of the GEOBIA classification process.
Also, categories such as High Socioeconomic Residential and Urban Agriculture exhibit
multiple characteristic manifestations of sub-object land cover composition, and require
subdivision into multiple subclasses for training and classification purposes.

A QuickBird satellite image mosaic that is based on multispectral data captured on several
dates in January 2010 and covering the Accra Metropolitan Area was purchased. The multi-
spectral data set includes four broad wavebands in the Blue, Green, Red, and Near Infrared
(NIR) portion of the electromagnetic spectrum. The multispectral data were utilized for the
evaluation of histogram signatures and curve matching. A pan-sharpened version of the
same QuickBird image mosaic was used for the manual selection of training and test data.
The QuickBird imagery had been georeferenced to the Universal Transverse Mercator map
projection by a third-party geoprocessing company at the Standard processing level (CE90 =
23 m; RMSE = 14 m).

3. Methods
The general research approach consisted of sampling pixel groupings or areas of interest
(AOIs) representing LCLU types of interest in Accra from a QuickBird multispectral image,
evaluating histogram signatures, and testing a simple curve matching routine. Histograms
were generated and compared within and between LCLU types. A measure of curve
similarity was implemented to quantitatively compare curves from various LCLU polygons.
Accuracy of the LCLU classification based on this histogram curve matching approach was
compared to results from a nearest neighbor (i.e., minimum distance to means) classifier.
Details of the research methods follow.

3.1 Pre-processing
Several pre-processing procedures were conducted on the QuickBird imagery, in addition
the geo-processing. A subset image was extracted to avoid clouds and cloud shadows. A
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normalized difference vegetation index (NDVI) was derived from uncalibrated digital
number (DN) values based on the formula: NDVI = (NIR − Red)/(NIR + Red), as a means
for enhancing the contrast between vegetation and non-vegetation surfaces. Through
experimentation, we also generated a spectral index that enhances road pavement and other
impervious surfaces from soil and vegetation according to the formula: NDRBI = (Red −
Blue)/(Red + Blue) and coined it the normalized red-blue index (NDRBI). The two
normalized difference spectral indices were used rather than spectral wavebands for most of
the study, because of their ability to normalize most of the spatial variability in raw spectral
radiance data, such as from atmospheric and view angle effects, and to reduce four highly
correlated wavebands into a two-channel data set. Our preliminary analyses of LCLU
histogram curves derived from spectral waveband and spectral index data revealed that the
spectral index curves were more consistent and characteristic for LCLU types.

3.2 Training and Test Object Histograms
We delineated polygons (i.e., AOIs) representing the five LCLU classes through visual
interpretation of the pansharpened QuickBird image and manual digitizing. Since no extant
LCLU data sets are available for Accra, delineation of LCLU polygons was guided
primarily through visual interpretation, with some knowledge of Accra’s landscape and
LCLU characteristics gleaned through field reconnaissance. We delineated AOIs manually
to include most of an entire LCLU polygon object, erring on the side of excluding pixels
from adjacent LCLU polygons (Shandley et al., 1996). Between eight and 15 AOIs were
delineated for each LCLU class, ranging from 0.3 to 36 hectares in size. Two or three AOIs
were used for training (i.e., a supervised classification context) and the remainder for testing
(i.e., accuracy assessment). This yielded between six and 13 test AOIs (polygons) per class,
with the predominant urban classes (HSE, LSE and Urban Non-residential) being
represented by at least 12 AOIs (as shown in Table 2). While such a sample size is certainly
not exhaustive, it represents a reasonable size given: (1) the percentage of study area and
number of pixels represented by the sample sets for each class (as illustrated in Table 2), (2)
the cumbersome nature of extracting sample sets and testing the curve matching approach
(described below) in the absence of custom software tools, (3) the uncertainty in selecting
reliable AOIs for specific LCLU categories in the absence of existing maps, and (4) the
exploratory nature of our evaluation of the histogram curve matching approach. Pixel
samples from each AOI were extracted and ported to a spreadsheet for histogram generation
and curve matching. Histograms bin values were normalized by dividing the frequency
count for each bin by the total number of pixels in each LCLU AOI.

Our preliminary visual analyses of LCLU histograms revealed the existence of subclass
groupings of characteristic signatures. In some cases these subclasses represented different
compositions within LCLU polygon and other cases they represented more specific LCLU
types within a broader LCLU class to which they were members. In particular for the latter
case, specific LCLU subclasses of Urban Non-residential such as Institutional, Industrial,
and Commercial types exhibited dissimilar histograms, and were treated as separate
spectral-informational classes. This is similar to when selecting and refining training
signatures for per-pixel, supervised classification. Training or reference histogram curves
were generated by taking the average frequency values at each digital number (DN) bin, or
for the Accra QuickBird example, normalized difference index (NDI) bins, for two or three
representative curves for each LCLU class or subclass, as illustrated in Figure 2.

3.3 Histogram Curve Matching
A simple measure of similarity for quantitatively comparing and classifying normalized
histogram curves of LCLU polygons was utilized. The Histogram Matching Root Sum
Squared Differential Area (HMRSSDA) measures histogram similarity by computing the
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squared difference at each DN (or NDI bin), summing the squared differences, and taking
the square root of this sum, according to the formula:

where: FSi = frequency of the subject histogram at i = DN, FRi = frequency of reference
histogram at DN = i, and DN = digital number.

The routine is similar to the spectral curve matching approach utilized by Hamada et al.
(2007), which was used successfully to identify invasive plants based on classification of
hyperspectral data. Given the exploratory nature of this study, we selected this curve
matching measure based on its simplicity and the successful utilization by Hamada and
others (2007). For this implementation of HMRSSDA, values are maximized (near 1) when
comparing similar histogram curves and approach 0 when they are completely dissimilar.
HMRSSDA may be used quantitatively compare curves, or to classify curves against
template curves derived from training date. As illustrated in Figure 3, a subject curve is
classified according to the LCLU type for which its template curve yields a maximum
HMRSSDA value.

4. Results
4.1 Histogram Analysis

Figure 4 depicts the histogram curves for NDVI and NDRBI indices from training data for
all five LCLU classes and associated subclasses. Since NDVI varies from low to high with
greater amounts of green vegetation cover and NDRBI primarily varies from low to high
with greater amounts of impervious material cover, the magnitudes of NDVI and NDRBI
histograms for a given LCLU class tend to be on opposite ends of the index ranges. For
example, Forest/Natural Vegetation exhibits a high NDVI and low NDRBI signature curve.

The shapes of histograms for each class tend to be consistent for both NDVI and NDRBI,
with the exception of Urban Agriculture. Low Socioeconomic Residential (predominantly
composed of impervious and soil materials), and Forest (predominantly composed of green
vegetation) exhibit normal, highly peaked curves, while High Socioeconomic Residential
and Urban Non-Residential subclasses have broad, highly dispersed, and skewed histograms
with a dominant mode. Urban Agriculture exhibits a broad right skewed histogram in NDVI
and a narrow, Gaussian-like curve with a low magnitude peak in NDRBI. This suggests that
the curve matching classification approach relative to a nearest neighbor approach may be
advantageous for accurately classifying High Socioeconomic Residential, Urban Non-
Residential and Urban Agriculture classes that exhibit broader and more complex
distributions.

From a standpoint of between class separability, all curves are characteristic and unique,
with the exception of one of the High Socioeconomic Residential and one of the Urban Non-
Residential subclasses that were similar for NDRBI. However, the NDVI curves for these
same subclasses are unique. Curves of some subclasses from the same parent classes are not
always unique, but that does not influence the between-class separability.

4.2 Classification Results
Tables 3 through 5 show accuracy statistics for exploratory classification results based on
the histogram curve matching approach for NDVI, NDRBI, and combined NDVI and
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NDRBI inputs. The overall agreement is 71.1%, 65.4%, and 73.1%, respectively.
Commission errors were generally low for all classes except High Socioeconomic
Residential for NDVI and combined NDVI/NDRBI, and Urban Non-residential for NDRBI.
Low Socioeconomic Residential and Urban Non-residential had relatively high omission
errors in NDVI, while omission errors were highest with NDRBI for High Socioeconomic
Residential and Urban Agricultural. When incorporating both spectral indices, the greatest
confusion occurred between Low Socioeconomic Residential and Urban Non-residential and
between High Socioeconomic Residential and Urban Agriculture classes.

Tables 6 through 8 show classification accuracy statistics for a nearest neighbor classifier
applied to within-object mean values for NDVI, NDRBI, and combined NDVI-NDRBI
inputs. The overall agreement values are 65.4%, 59.6%, and 73.1%, respectively. Overall
accuracy was lower for the nearest neighbor classifier when a single spectral index was
incorporated and identical to the curve matching classifier when both indices were utilized.
The greatest confusion occurred between High Socioeconomic Residential and Urban Non-
residential, the two classes with broadest and least normally distributed histograms.

5. Discussion and Conclusion
The rationale for testing a curve matching approach for within-object pixel classification is
that histogram curves may be complex (i.e., non-normal) and characteristic (consistent
signatures for particular classes). The results from the empirical evaluation of QuickBird
data (GSD = 2.4 m) for LCLU classes in Accra suggest that histograms can have
consistently characteristic shapes for particular classes, but do not consistently exhibit
complex shapes. Histograms of image brightness values represent the frequency of
occurrence of spectral reflectance within an image-derived object, as a function of the
material composition within the scene unit associated with an image object. When material
composition is diverse and heterogeneous, then histogram distributions can be complex.
This is particularly true if a few dominant within-object materials have variable reflectance
properties. Spatial arrangements and size variations of sub-object materials are not captured
by these histograms. An avenue for future research should be the development of frequency
distributions of spatial context measures associated with subobjects and their spatial
arrangements within LCLU polygons.

Figures 5 and 6 portray histogram curves from digital airborne multispectral data (GSD = 1
m) for AOIs associated with LCLU and vegetation community types, respectively. The
imaged scenes are semi-arid suburban and rural shrubland landscapes (respectively) near
San Diego, California, USA. The mean curves shown in Figure 5 for six LCLU types were
extracted from the NIR waveband of an ADS-40 digital image and exhibit a high degree of
shape complexity and most have multiple modes. Conversely, the mean curves of six
vegetation community types extracted from the Red waveband of an ADAR 5500
multispectral image of an undeveloped rural shrubland landscape exhibit narrow, normally
distributed curves with minimal complexity. These “pilot study” curves, in conjunction with
those from the Accra QuickBird imagery suggest that curve complexity and therefore, the
potential of curve matching classifiers depend on landscape structure, classification
objective, and the spatial resolution of the input image data.

The curve matching approach to classifying multi-pixel objects corresponding to LCLU
units is promising. While the HMRSSDA classifier yielded slightly higher to identical
accuracy relative to a nearest neighbor classifier, more extensive sample sets and tests for
varying image spatial resolutions, landscape types and LCLU schemes should be
incorporated in future studies to fully determine its effectiveness. The curve matching
approach seems to be most effective when the mean, standard deviation and other
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parametric statistical moments do not sufficiently describe a complex, non-normal frequency
distribution.

The classification measure that was tested, HMRSSDA, is based on a very simplistic
measure of curve similarity. More robust measures of curve similarity such as
hyperdimensional angle mapper and spectral information divergence, utilized for
hyperspectral curve matching (van der Meer, 2006), should be evaluated for histogram curve
matching purposes. In addition to providing a classification metric, HMRSSDA and other
curve similarity measures may be useful as quantitative measures for assessing whether or
not within-object pixel groups from a given LCLU class have characteristic signatures. Such
measures may also be used as separability metrics when selecting and grouping training
histograms for a given class, such as when developing subclass signatures. More generalized
LCLU classes may be composed of several spectral-informational subclasses that have
unique histogram shapes, whereas the mean curve for the entire sample of AOIs for the
general class may not be characteristic or unique.

As stated early in this paper, the premise of the curve matching classification approach is
that image objects have first been delineated, either through image segmentation (most
commonly), or by incorporating extant digital representations of field or parcel boundaries.
For the curve matching classification to be successful, image segments must be sufficiently
large to capture the characteristic variability of image brightness values associated with a
given class. If delineated too small, the distributions may be more representative of
homogeneous subobjects having histogram signatures that are different from the
characteristic curve of an entire LCLU unit.

Humans conducting manual interpretation for LCLU mapping tend to integrate the object
delineation and classification tasks when mapping LCLU polygons. In other words, they are
generally cognizant of the LCLU class membership when delineating (e.g., heads-up
digitizing) the boundary of a polygon. This suggests that histogram curve template matching
may be useful not only for classifying pixel groups belonging to an image object, but also in
image segmentation when delineating image objects that correspond to LCLU boundaries.

The next steps for follow-on research will be to: (1) implement the curve matching approach
into image processing software to enable more efficient and robust generation of training
curves and calculation of histogram matching scores, (2) generate a more exhaustive data set
(i.e., larger sample size) and evaluate the curve matching approach for one or more study
areas for which LCLU data are readily available, (3) examine the relationship between
image spatial resolution and within-object frequency signatures, and (4) test other measures
of curve similarity (i.e., other than HMRSSDA).
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Figure 1.
Study area map of Accra, Ghana with QuickBird satellite image mosaic (Red waveband).
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Figure 2.
Example of training AOIs and mean histogram curves for two subclasses of the Urban Non-
residential class derived from the QuickBird normalized difference red-blue index (NDRBI)
image.
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Figure 3.
Schematic of the histogram curve matching approach illustrating a subject histogram for a
High Socioeconomic Residential (HSE) object compared to training class histograms for
HSE and Low Socioeconomic (LSE) classes. Shaded areas depict differences between the
subject and mean curves.
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Figure 4.
Training (mean) histogram curves for all classes and subclasses. a. NDVI and b. NDRBI.
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Figure 5.
Histogram curves for land cover and land use AOIs derived from NIR waveband of ADS-40
(GSD = 1 m) image of a portion of San Diego, California, USA.
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Figure 6.
Histogram curves for vegetation community AOIs derived from Red waveband of ADAR
5500 (GSD = 1 m) image near San Diego, California, USA.
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Stow et al. Page 16

Table 1

Land cover and land use classes with descriptions.

Land Cover/Land Use Classes Class Descriptions

Forest (and other natural vegetation) Lush vegetation mostly forest on the outskirts of city, and wetland vegetation along river and tidal
slough areas

High Socio-Economic Residential (HSE) Moderate to large size structures, lush landscape vegetation, mostly paved streets, more organized
neighborhood structure

Low Socio-Economic Residential (LSE) Small informal dwellings to large building compounds, minimal landscape vegetation, mostly
unpaved streets, often chaotic settlement pattern

Urban Non-residential Commercial, industrial and institutional land uses; large buildings with parking lots, some
landscape vegetation

Urban Agriculture Vegetated and fallow plots with fairly rectangular shapes
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