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Urban places represent built environments that are physically distinguishable from 
the natural environment, and are thus potentially identifiable through the use of 
remotely-sensed sources such as satellite images. The urban environment can be 
defined by classifying images and then combining that information with census 
data to create a quantitative index of the urban-rural continuum. This is based on 
the premise that variability in the built environment is associated with variability in 
human behavior, and that this variability captures the nature of urbanness in human 
societies. The chapter begins with a justification of the use of the built environment 
as a signature of urban places. It continues with an overview of how satellite 
images can be used to distill information about the urban environment, and of the 
role that geographic information systems (GIS) play in the analysis. It then 
illustrates this approach to understanding the urbanness of places using data from 
Egypt. Variables derived from satellite images are combined with census data to 
improve our understanding of the spatial variability in human behavior in the 
context of the urban-rural continuum. Finally, ways in which this type of analysis 
could be used to measure and understand phenomena such as urban sprawl and 
multinucleation of metropolitan areas are suggested. 
 
 
The Built Environment as a Signature of Urban Places 
 
Urban places are typically defined by demographers according to criteria of 
population size and density. To be urban requires that a sufficient quantum of 
people are living in sufficiently close proximity to one another so that life is 
demonstrably different from that in rural areas. That difference is often expressed 
in terms of economic activities. In particular, urban places are routinely defined as 
concentrations of people who are engaged in nonagricultural activities (Weeks, 
2002). Definitions based on size, density, and economic activity all imply a 
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dichotomy between urban and rural, and that notion is almost certainly accurate 
from an historical perspective. Until only a few hundred years ago, most cities 
were bounded by protective walls, which offered a clear distinction between the 
city and the noncity population. In the United States in the 19th and early 20th 
centuries, rural turned into urban when you reached streets laid out in a grid. 
Today, such clearly defined transitions are rare. As discussed in the opening essay 
of this volume, researchers have complained for decades about the arbitrariness of 
drawing a line between places that are rural on one side and urban on the other. 
 Over time the distinction between town and country may have become blurred, 
but in general the distinction illustrates an important point: urban places are 
identifiable by their infrastructure. As Smailes (1966, p.33) suggested, ‘the 
geographer must regard as urban a particular manmade type of landscape.’ Urban 
places – be they towns, cities, or megalopolises – have, at a minimum, buildings 
and roads that make them different from the rural countryside. Historically, that 
difference has always been present, but modern urban places have vastly more 
complex infrastructure, including electricity lines, gas pipelines, water storage and 
treatment facilities and water transport pipes, sewers and waste treatment plants, 
landfills and other refuse facilities, bridges, tunnels, and various aspects of mass 
transportation and telecommunication.  
 Yet, many of these aspects of infrastructure, especially the communications-
related ones, have now reached into what had previously been thought of as rural 
places, changing the lives of those residents in the process. This reminds us that 
important aspects of urbanization are ideational. There is an explicit recognition 
that urban people order their lives differently from rural people; they perceive the 
world differently and behave differently. At the same time, living in a rural area in 
most industrialized societies does not necessarily preclude participation in urban 
life. The flexibility of the automobile, combined with the power of 
telecommunications, can put most people in touch with urban life. Even in remote 
areas of developing countries, radio and satellite-relayed TV broadcasts played on 
sets powered by a portable generator can make rural villagers knowledgeable about 
urban life, even if they have never seen it in person (Critchfield, 1994). In the 
process, people in rural places are becoming more urban, and this serves to change 
the character of the places where they live.  
 The increasing connections between the urban and the rural have the effect of 
urbanizing rural places, helping to explain why the world is on a trajectory toward 
being predominantly urban: not only are people moving to cities; the cities are 
moving to people. The direction of movement is important to consider. Rural 
places tend to be characterized by what they lack – electricity, running water, 
sewage, paved roads, schools, health clinics and hospitals, diversity of employment 
opportunities, not to mention the lack of amusements and amenities such as sports 
teams, theatres, and restaurants. While there are always some people who do not 
want such things, the evidence suggests that most rural residents prefer to have 
more, rather than less, of these improvements. For most of human history, a person 
had to migrate to a city to participate in urban life, but it is now possible for 
governments to extend many of the characteristics of urban life into rural areas, 
permanently changing the nature of those places, both ideationally and physically.  



 Using Remote Sensing and GIS 325 

 

 As important as ideas are, the signature of an urban place is the built 
environment, represented most obviously by buildings, roads and sidewalks. A 
person raised in the city will still be urban even when isolated in the countryside, 
just as a farmer who moves to the city may never fully adapt to the kind of life 
demanded by the city. But both people readily recognize the gradations of 
urbanness or ruralness by the differences in the built environment. Furthermore, 
differences in the built environment can be shown to be related to differences in the 
human behavior taking place in those environments. Byrne (2001, p.149) reminds 
us that, in fact, ‘the built environment for urban residents is the locus of the social.’ 
As Winston Churchill once said, ‘We shape our buildings, and afterwards our 
buildings shape us’ (Churchill, 1943). This is another way of saying that the 
context in which we live influences how we live. Duncan made the classic 
statement of this: 
 

A concrete human population exists not in limbo but in an environment. Moreover, to 
continue to exist, it must cope with the problems posed by an environment which is 
indifferent to its survival but offering (in varying degree) resources potentially useful 
for the maintenance of life. By mere occupancy of an environment, as well as by the 
exploitation of its resources, a human population modifies its environment to a greater 
or lesser degree, introducing environmental changes additional to those produced by 
other organisms, geological processes, and the like. Thus, in the language of 
bioecology, one may say that not only does the environment ‘act’ upon the population 
but also the human population ‘reacts’ upon its environment…The ‘adjustment of a 
population to its environment, therefore, is not a state of being or static equilibrium but 
a continuing, dynamic process. (Duncan, 1959, pp.681-82). 

 
When Duncan uses the word ‘environment’, he is referring to the natural 
environment, in the way that human ecologists have tended to do, but a substitution 
of ‘built environment’ for ‘environment’ keeps the meaning while applying it 
specifically to human life as organized in cities, towns and villages. The term 
‘local context’, or ‘local environment’, means the complex of social activities that 
are taking place within a given built environment. 
 Social scientists tend to focus on the population and social organizational parts 
of this system, and spend less time thinking about the environment in which these 
parts are embedded. In particular, sociologists and demographers tend to be vague, 
if not dismissive, of the built environment of the buildings, parks, roads, bridges, 
and the associated infrastructure that humans create out of the natural environment 
and which become the places where everyday life takes place. Yet, the built 
environment is, in fact, the actual environment in which a large fraction of humans 
spend their entire lives. The natural environment is so transformed by urbanization 
that the majority of urban residents spend little time touching soil and interacting 
with flora and fauna.  
 To understand what an urban area is, we can begin with the idea that the local 
environment of social structures and institutions is the context within which 
individual lives are understood, and then add to that the notion that the outward 
manifestation of the social environment is the built environment (the buildings, 
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streets, and infrastructure) created by the people living in those places. This is 
important both theoretically and methodologically because the social world exists 
only in our heads, whereas the built environment is the physical representation of 
the social activities of humans and it may be more measurable than are the attitudes 
and behaviors of the people themselves. Furthermore, as Bronfenbrenner (1995) 
notes, individuals and their environments are in constant, reciprocal interplay: there 
is a dynamic relationship between the built and social environments. Urban places 
are microcosms of a larger society, shaped by the interaction of demographic 
processes, social processes, and the built environment in which these processes are 
being played out. In other words, the urban transition is not just a national pattern 
that can be laid over a society and understood in those general terms. It is a process 
that occurs place by place over time, and if we can understand how the 
demographic and social processes intersect with and interact with the built 
environment, then we should have a greater understanding of the underlying source 
of dynamism in urban morphology.  
 This implies that, if we can quantify aspects of the underlying properties of the 
built environment, then we can produce an index that measures the degree and/or 
type of urban place, helping us thereby to move beyond a dichotomy of urban-rural 
into a genuine continuum of urbanness that encompasses properties of the built 
environment as well as the behavior (or at least the characteristics of) the people in 
those environments. Seen in this way, the built environment is not just a proxy for 
an urban place, but rather it represents an important stage upon which urban life is 
played out, and different stages demand and/or permit different kinds of human 
activities. The physical and social worlds are thus highly interconnected. A built 
environment left unattended by humans slowly reverts to nature, just as a human 
population living outside a built environment lives within the primitive world of 
nature, with all of the attendant tasks and risks associated with that life. 
 I argue that, precisely because the built environment is a signature of urban 
places, we may be able to use the technology of remotely-sensed imagery and GIS 
to assist in the development of new approaches to the measurement and 
quantification of the rural-urban continuum.  
 
 
Using Remote Sensing to Capture the Urban Scene 
 
Remotely-sensed images range from high-resolution aerial photographs and digital 
imagery to low-resolution satellite images (which may be either photographs or 
digital imagery), with most imagery used in social science falling in the middle of 
that range. Resolution refers to the size of the scene on the ground captured by the 
smallest pixel (picture element) in the image. Thus, a 1-meter image means that the 
smallest amount of detail in the image is 1 meter by 1 meter in size on the ground. 
Images also vary according to the bandwidth of light captured by the sensor 
(camera or other recording device), ranging from panchromatic (gray scale) to 
multispectral (visible red, green, blue, and near-infrared bands, as well as other 
bands that are not visible to the naked eye). A basic premise of remote sensing is 
that the earth’s features and landscapes can be discriminated, categorized, and 
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mapped according to their spectral characteristics. The nuclear reactions of the sun 
produce electromagnetic energy, and this energy is propagated by electromagnetic 
radiation at the speed of light through space, reaching the earth’s atmosphere 
practically unchanged. Part of it is absorbed as it passes through the atmosphere, 
and the remainder continues on to the earth’s surface. The part that continues is 
then either reflected or absorbed by objects on the earth’s surface and reradiated as 
thermal energy. ‘Passive’ remote-sensing systems operate by measuring the energy 
which is reradiated or reflected from the object of interest back to the remote 
sensor. The sensors are most often optical (measuring light reflectance), but they 
may also be thermal (measuring heat reflection), or something else, depending 
upon the wavelength of the specific kind of energy that the sensor is designed to 
measure (Lillesand and Kiefer, 2000). 
 In order to appreciate the value of remotely-sensed images for demographic 
analysis, it is crucial to understand exactly what it is that can be extracted from an 
optical satellite image. The image itself is composed of a mosaic of individual 
pixels representing information that has been captured for an area on the ground 
that is equal to the resolution of the image. The information recorded for each 
image depends upon the particular sensor. For a panchromatic image, information 
is recorded for only one band of reflectance, based on the brightness of the pixel in 
the visible range of wavelengths between approximately 0.4 and 0.7 micrometers 
(µm). We typically call this a black-and-white image, although really it is mainly 
shades of gray, with black and white representing the two extremes. Technically, it 
is brightness at the satellite that is recorded, but through a series of adjusting 
techniques, we are able to estimate what the brightness is on the ground at that 
place shown on the image. For a multispectral image, information is recorded for 
two or more bands of reflectance. The Indian Remote Sensing multispectral image 
(IRS-IC LISS-III) which is used in the research reported here records three bands 
in the visible and near infrared (VNIR) range, including green (0.520-0.590 µm), 
red (0.620-0.690 µm), and near infrared (0.770-0.860 µm) at 24-meter spatial 
resolution, and one band in short wave infrared (SWIR – 1.50-1.70 µm) at 71-
meter spatial resolution.  
 For work at the equivalent of the census-tract level of analysis, the ideal image 
is a relatively high-resolution multispectral image. In the research that is discussed 
here, only commercially available satellite images are employed. The ‘highest-end’ 
commercial options include 1-meter resolution IKONOS panchromatic images and 
4-meter IKONOS multispectral images, which can be merged with the 1-meter pan 
image to create representative 1-meter color imagery. There is currently no archive 
of these images for the study site in Egypt, and so they would have to be specially 
ordered at considerable cost. Existing archived images for the late 1990s and early 
2000s include Landsat (US) Thematic Mapper 30-meter multispectral images, 
SPOT (French) 20-meter multispectral images, IRS (Indian Remote Sensing) 5-
meter panchromatic images and 24-meter multispectral images, and SPIN-2 
(Russian) 2-meter panchromatic images.  
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Analysis of Images for Urban Areas 
 
Images were first derived from aerial photography in 1858, and they have been 
useful in the analysis of urban areas for several decades. The Australian Bureau of 
Statistics notes that an urban center with a population between 1,000 and 19,999 is 
to be delimited ‘subjectively by the inspection of aerial photographs, by field 
inspection and/or by consideration of any other information that is available’ 
(Australian Bureau of Statistics, 2001). In the 1960s, Noin (1970) derived 
estimates of the rural population of Morocco by examining aerial photographs to 
determine the number of housing units in rural areas and then applying a 
household-size multiplier to dwellings to estimate the population. One of the more 
sophisticated applications of aerial photography was that by Green (1955), who 
developed a method to analyze the social structure of urban areas based on a set of 
surrogates obtained from the aerial photos. Using black-and-white photos, he 
created social indices based on characteristics such as neighborhood location, 
single-family homes, and density of housing. In most applications of aerial 
photography, however, information is obtained from an image captured on film by 
means of interpretation of the image by humans. This requires a great deal of 
training and practice and it is not necessarily replicable from place to place and 
time to time. When images are captured digitally, it is possible not only to interpret 
them, but also to classify the information using a mathematically-derived algorithm 
that is replicable and which can produce a statistically quantifiable result.  
 The classification of digital images has represented a breakthrough for 
analyzing the earth’s surface because the process can be automated on the 
computer and repeated for images representing different times and places. Image 
classification is the process whereby all pixels in the image are categorized into a 
land-cover class or theme (Lillesand and Kiefer, 2000). As we (or, more 
accurately, computers using an algorithm that we have developed) look at each 
pixel, the question is: Does this pixel represent vegetation (and perhaps a specific 
type of vegetation), or bare soil, water, shade, or an impervious surface (such as 
asphalt or cement)?  These are the basic building blocks of the natural and built 
environment and each type of land cover is associated with a particular ‘spectral 
signature,’ which represents a combination of wavelength values shared by one 
class of surface (such as vegetation), but not by the others. The higher the 
resolution (i.e. the smaller the pixel size), the more accurately we are able to 
classify a pixel because it is more likely that the pixel will include only one type of 
land cover. On the other hand, for lower-resolution images, the more likely it is 
that the pixel will represent a mixture of different land covers, forcing us to make 
decisions about how appropriately to classify the image. Once we have classified 
the image according to land cover (the physical property as seen from the air), we 
are in a position to use information from other sources to make inferences about 
the way in which the land is being used (which is a socially derived category). 
From this process we are able to create variables describing the environmental 
context of a specific place. 
 The panchromatic image is not capable of classification into land-cover types, 
but it can be used to derive information about brightness and about the texture at 
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the earth’s surface. The variability from one pixel to another in the amount of 
brightness (the gray scale) at night, for example, can be used as an index of 
economic wellbeing. In a rural village light at night may indicate electrification, 
indicating a higher level of economic development than a similarly situated village 
emitting less light. Weeks (2003) used the brightness of night-time lights to assess 
the relationship between lighting and crime in an urban center in California. Light 
reflected from the surface during the day is more varied, of course, than at night 
and this provides a way of measuring texture at the earth’s surface. Very little 
variability from pixel to pixel in the amount of brightness would indicate a 
homogeneous surface, and a great deal of variability would indicate a 
heterogeneous surface. In a city such as Cairo, Egypt, the older parts of the city, 
characterized by low-rise buildings and narrow streets – what Rodenbeck (1999, 
p.224) has called the  ‘higgledy-piggledy burrows’ of Cairo’s popular quarters – 
will exhibit a relatively homogeneous texture, whereas newer ‘irregular’ suburbs 
may be expected to exhibit considerable heterogeneity in texture. By combining 
the land-cover classification with the texture classification, we are in a position to 
describe the physical nature of the urban scene captured by the remote-sensing 
device. 
 In general, vegetation is easier to classify than are humanbuilt structures, and 
so the classification of remotely-sensed urban imagery is much more cutting-edge 
than is the classification of rural areas (Jensen and Cowen, 1999). Most of the 
literature on the classification of remotely-sensed images has emphasized the 
creation of variables describing the natural environment of plants, soil, and water. 
Urban environments include a complex mix of buildings, streets and other 
infrastructure, as well as vegetation, soil, and water, often interwoven with one 
another. Methods for dealing with urban images are still evolving, but at an 
increasingly rapid pace (Gruen et al., 1995; Cowen and Jensen, 1998; Rindfuss and 
Stern, 1998; Jensen and Cowen, 1999). Seeking social meaning in imagery holds 
the promise of providing information that speaks to the core research issues of the 
social sciences (Geoghegan et al., 1998). The interface between remote sensing 
and social science depends on the kind of features that can be detected such as 
landuse/landcover, buildings, infrastructures, roads network, and also on how often 
and to what detail such data can be obtained (i.e. spatial and temporal resolution).  
 Numerous studies have documented the ability to extract population 
information either directly from remotely-sensed data, or indirectly by analyzing 
information derived from the imagery (Lo, 1995; Elvidge et al., 1997; Lo et al., 
1997; Mesev, 1998; Ryznar, 1998; Tanaka et al., 1999; Weeks et al., 2000; Rashed 
et al., 2001). Lo (1995) was able to derive population estimates from remote 
imagery by testing a number of regression models that link spectral radiance 
obtained from a multispectral SPOT image with high and low population densities 
in some metropolitan areas in Hong Kong. Elvidge et al. (1997) and Doll et al. 
(2000) have used satellite images to identify the relation between population, gross 
domestic product and electric power consumption in 21 countries. They concluded 
that VNIR (visible and near infrared) emissions of nighttime lights could be 
successfully used to define and update the spatial distribution of human 
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populations, particularly in urban areas. Other studies have shown that community-
level demographic characteristics such as income and education are strongly 
correlated with variables extracted from high-resolution remote imagery (Jensen 
and Cowen, 1999). Examples of such variables extracted include building sizes and 
densities, parking lots, existence of water tables, street widths, and health of 
landscaping. 
 These studies have demonstrated the potential value of remotely-sensed 
images, but we are just now in the process of developing algorithms for the 
automatic extraction of information from images in ways that allow us to use these 
data in a quantitative spatial analysis of the urban scene over a fairly large area.  
 
 
Using GIS to Analyze the Urban Scene 
 
Although we may have successfully classified the pixels in the image according to 
land-cover type and texture, the analysis of that information requires that we link 
the location of each pixel to other information about what is happening on the 
ground at that location. For the purpose of analyzing the urban structure, we are 
particularly interested in joining the data from the remotely-sensed image to 
information gathered at the local level in the census, such as the equivalent of the 
US census tract. We accomplish this in a GIS environment, which allows us to 
match data from one layer (such as the image analysis) for a specific geographic 
area (such as a census tract) with data from another layer (such as the census data) 
for that same geographic area. It is not an exaggeration to say that the remotely-
sensed data would be useless to us unless they were incorporated into a GIS. 
 A GIS is a computer-based system that allows us to combine maps with data 
that refer to particular places on those maps and then to analyze those data and 
display the results as thematic maps or in some other graphic format. The computer 
allows us to transform a map into a set of areas (such as a county or a state or a 
census tract), lines (such as streets or highways or rivers), and points (such as a 
house or a school or a health clinic). Our demographic data must then be 
georeferenced (associated with some geographic identification such as an address, 
ZIP code, census tract, county, state, or country) so that the computer will link 
them to the correct area, line, or point. If the computer knows that a particular set 
of latitude and longitude coordinates represents the map of Egypt, then our data for 
Egypt must be ‘georeferenced’ to that particular location. Or, if we have a survey 
of households, then each variable for the household would be georeferenced to the 
specific address (the point) of that household.  
 The ‘revolutionary’ aspect of GIS is that the georeferencing of data to places 
on the map means that we can combine different types of data (such as census and 
remotely-sensed data) for the same place, and we can do it for more than one time 
(such as data for the 1986 and 1996 censuses of Egypt and imagery for those two 
dates). This greatly increases our ability to visualize and analyze the kinds of 
demographic changes that are taking place over time and space. Since the census 
data will be aggregated at a specific geographic scale, with variables such as 
proportion of adult women who are literate, the data from the image must also be 
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aggregated up to that same level of geography. Thus, we must create summary 
indices of land-cover types and texture information that match the geography of the 
census data. It is easiest to explain this process through an illustration. 
 
 
An Illustration from Greater Cairo and Menoufia, Egypt 
 
The urban area of Greater Cairo comprises the governorate of Cairo on the east 
side of the Nile River as it travels through the metropolitan region, together with 
the portion of the governorate of Giza that is along the west bank of the Nile River 
within the metropolitan region, plus the southern tip of the governorate of Qalyubia 
– which currently represents the northernmost reach of Greater Cairo. The area’s 
location is shown in Figure 17.1. Nearly one in five Egyptians lives in the Greater 
Cairo region and for centuries it has been a quintessentially primate city, 
dominating the social, economic, and political life of the region. Its location is a 
geographically strategic crossroads (Palmer-Moloney, 2001). ‘When you see Cairo 
in its full setting, the whole city suddenly makes sense. Look south and you can see 
the long flat river coming out of Africa; look west and you can see the first veins of 
the rich Delta; look north and the river is heading determinedly for the 
Mediterranean and for Europe .…Cairo itself is built at the meeting place of 
Africa, Egypt, Europe, Arabia, and Asia’ (Aldridge, 1969, p.5). The United 
Nations Population Division (UN, 2003) lists the population of Cairo to be 9.5 
million as of 2000 (the 20th most populous city in the world), with a projected 
population of 11.5 million in 2015 (when it would be the 18th most populous).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17.1 Greater Cairo and the governorate of Menoufia in context 
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 Menoufia is a predominantly rural governorate (the equivalent of a state in the 
US or a county in the UK), just to the northwest of Greater Cairo. By government 
definitions of urban (which are based on administrative criteria), 80 per cent of 
Menoufia’s population of about 3 million people resides in rural places. We have 
satellite imagery of Cairo and Menoufia acquired for 1996 (multispectral) and 
1998 (panchromatic) and the census tract (‘shiakha’, literally the area controlled by 
a sheikh) boundaries from the 1996 census. Our goal is to combine data extracted 
from the image for each shiakha with data from the 1996 census for that area, in 
order to test the idea that data from the images will improve our ability to quantify 
the nature of human settlements. 
 
Extracting Variables from Remotely-Sensed Imagery 
 
As discussed above, there are two different types of variables that can be obtained 
from the image: (1) land-cover classification; and (2) texture. If the resolution of 
the image is sufficiently high (e.g. 1m or less), it may be that each pixel will 
represent only one type of land cover, and so we can make an accurate ‘hard’ 
classification. However, for lower-resolution images – the kind that are more 
readily available for different places and for different times – each pixel is likely to 
represent a mix of different land-cover types. As a result, a hard classification will 
probably represent only a part of the pixel and will inaccurately describe the 
remainder of the area covered by that pixel. A variety of techniques, including 
maximum likelihood classifiers, have been employed to try to increase the 
accuracy of the overall (or ‘hard’) classification of each pixel (see, for example, 
Curran et al., 2000; Mesev et al., 2001).  
 Our approach to classifying the urban scene is to employ a ‘soft’ approach, 
called spectral mixture analysis (SMA). Since our multispectral image has a 
resolution of 24 meters, we know that the probability is very low that any single 
land-cover classification will accurately represent a particular pixel. In the ‘soft 
classification’ approach, each pixel is assigned a class membership probability for 
each land-cover type. Fuzzy classification and SMA are two families of techniques 
designed to provide a ‘soft’ classification of mixed pixels. The basic difference 
between them is that SMA is based on a physical model of the mixture of discrete 
spectral response patterns (Roberts et al., 1998), thus providing a deterministic 
method for addressing the spectral mixing problem rather than a statistical method 
as in the case of the fuzzy approach (Mather, 1999). SMA allows us to decompose 
each pixel into the percentage of the pixel that is represented by the major land-
cover classifications that can be derived from the image. In this way, we create a 
profile for each pixel of its constituent parts, and by aggregating those values over 
the entire shiakha, we are able to define the land cover of the shiakha in terms of 
the percentage of the earth’s surface that is covered by particular types of cover. 
We have thus far favored the use of SMA over fuzzy-classification techniques, 
because it serves our purpose of deriving standardized and comparable RS 
measures that can be utilized with census data in a GIS to study demographic 
dynamics in urban areas. 
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 SMA was developed initially for use in classifying the natural environment, 
but we have shown that it also makes sense for urban environments. The details of 
the procedure are found elsewhere (Rashed et al., 2001), but here it is worthwhile 
discussing some of the underlying assumptions. Spectral mixing occurs when the 
spectrum measured by a sensor is a mixture of the spectral response of more than 
one component within the scene (Adams et al., 1993). That is, various materials 
with different spectral properties are represented by a single pixel on an image. A 
spectral mixture model is a physically-based model in which a mixed spectrum is 
modeled as a combination of ‘pure’ spectra, called endmembers (Adams et al., 
1993; Roberts et al., 1998). Linear SMA is the process of solving for endmember 
fractions, assuming that the spectrum in each pixel on the image represents a linear 
combination of endmember spectra that corresponds to the physical mixture of 
some components on the surface, weighted by surface abundance (Tompkins et al., 
1997). 
 The conceptual model selected to extract image endmembers from the RS data 
is Ridd’s VIS model (Ridd, 1995). The VIS model represents the composition of 
an urban environment as a linear combination of three types of land cover, namely 
green Vegetation, Impervious surfaces, and bare Soil. Just as soils may be 
described in terms of their proportions of salt, silt, and clay using the traditional 
triangular diagram, so various subdivisions of urban areas may be described in 
terms of proportions of vegetation, soil, and impervious surface. Ridd’s VIS model 
offers an intuitively appealing link to the spectral-mixing problem, because the 
spectral contribution of its three main components can be resolved at the subpixel 
level using the SMA technique. The model was originally applied to American 
cities, but it has also been tested with data from Australia (Ward et al., 2000) and 
Thailand (Madhavan et al., 2001). The results show that the model is robust 
outside the United States, although the model may require an additional component 
(e.g. water/shade) to achieve an accurate characterization of the morphology of 
non-US cities.   
 Successful SMA application relies on the accuracy of endmember selection. If 
the endmembers are incorrect in the physical sense, then the fractional abundances 
are also incorrect and the results of SMA become meaningless. The selection of 
endmembers can generally be done in two ways, either by deriving them directly 
from the image (referred to as image endmembers), or from field or laboratory 
spectra of known materials (referred to as reference endmembers). Since we do not 
have reference endmembers collected from the study sites, we use image 
endmembers in the SMA stage. Several methods of identifying image endmembers 
have been described in the literature (Milton, 1999). The approach we have 
adopted to select image endmembers is a compromise between manual and 
automated (‘Purity Pixel Index’) approaches (see Boardman, Kruse, and Green, 
1995). 
 The result, then, is a set of endmember fractions representing the percentage of 
each of four different types of land cover, classified from the modified VIS model 
as vegetation, impervious surface, bare soil, and our addition to the model of water 
and/or shade. Texture transform analyses are then used to add additional 
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information to the classification results, to quantify the degree of variability in the 
image from one pixel to the next. After classifying the imagery data and obtaining 
quantifiable indicators of variations in the physical environment, they are linked to 
census-derived variables within the GIS environment. To do so, the several classes, 
as well as the texture bands, are converted into raster grids such that each class is 
represented by a single grid. The next step is to convert each grid into a polygon 
coverage, with each pixel being converted into a polygon with an area matching 
that of the remotely-sensed image’s resolution (in this case 24 square meters). 
Resultant coverages are then clipped to the outside borders of the study area. Next, 
a coverage of the shiakhas is laid over each class’s coverage and a unique code is 
assigned to each pixel (represented by a polygon) according to which census tract 
(shiakha or locality) it was located within. For each class coverage, the area of all 
pixels belonging to the same census tract is summed, and the total area is then 
normalized by calculating the ratio of the resultant area to the census tract's area. 
The end product is a normalized value (ranging from 0 to 100) for each of the 
classes assigned to each census tract, indicating the percentage of pixels in that 
census tract that are classified into this particular class. Each class represents a 
different aspect of the urban environment (such as areas dominated by tall 
buildings, areas dominated by low-rise buildings, areas with vegetation, areas with 
water or shade, areas that are highly variable in texture, and areas that are 
homogenous with respect to texture). These classes thus represent the variables 
derived from the images, and the percentage of pixels in each class is the 
measurement of that variable within that geographic area. 
 
Predicting an Urban Gradient from the Remotely-Sensed Image 
 
The quantification of human settlements in terms of their degree of urbanness 
should permit us to move from thinking in terms of a rural-urban dichotomy to the 
notion of an urban gradient. This builds on the concepts inherent in Christaller’s 
(1966) central-place theory, but with the modification that, while most theories of 
urbanization take each city as the unit of analysis, our approach is to look at each 
city as a dynamic region undergoing constant change with respect to its urban 
characteristics. In the gradient conceptualization, we would expect that the 
geographic center of a city would be most urban, and that urbanness would decline 
with distance from the center. Over time, of course, we would expect to find that 
diffusion of urbanness, and various processes such as counterurbanization 
(Champion, 1989), would contribute to an increase in the urban characteristics at 
increasing distances from the center. Indeed, this might lead to mutations into 
multiple nuclei as some areas away from the center take on the characteristics that 
at an earlier time were solely the properties of the center.  
 Population density and nonagricultural activities are the most often used 
indices of an urban place, and have been used as the initial measures of an urban 
gradient in Cairo and Menoufia, with the task then of evaluating how well they are 
predicted solely on the basis of the information derived from the remotely-sensed 
images. In other words, how closely associated are the usual definitions of urban 
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places with the characterization of the environment context that includes 
information obtained from a satellite image? 
 We have data for 300 shiakha in Greater Cairo, and an additional 314 shiahka 
in the neighboring rural governorate of Menoufia. Population density in Cairo 
ranges from a low of 618 person per square kilometer (in an area on the edge of the 
Mukatim desert to the southeast of downtown Cairo) to a high of 359,000 (in the 
parts of south central Cairo dominated by high rise apartment buildings), with a 
mean for the city of 45,000. The distribution is highly skewed, with the highest 
densities being found in a relatively few neighborhoods and with most 
neighborhoods having more moderate levels of density. Density is generally lowest 
in the outer ring of Cairo, but there are some clearly defined spatial patterns that 
can be seen in Figure 17.2, which maps population density in Greater Cairo and 
Menoufia.  
 
 

 
 
Figure 17.2. The urban gradient in Cairo and Menoufia measured by 

population density 
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 In Menoufia the highest density is 14,138 per square kilometer, with a low of 
145 and an average density of 1,851. That density definition includes the entire 
area of each shiakha. If we look only at the built area of each shiakha, we find that 
the rural villagers are actually living much more densely. The built area of the 
average village comprises 10 per cent of the land area of the shiakha. If we assume 
that all people in the shiakha reside within the boundaries of observable built area, 
then the average population density in Menoufia is just under 45,000 persons per 
square kilometer, almost exactly the same as in the Greater Cairo area. However, to 
be consistent with the general principle of defining density as population per total 
area, I have used the standard definition of population density in this analysis. 
 Economic activity was measured in terms of the percentage of economically 
active males aged 15 and older who were employed in any sector other than 
farming, fishing, hunting, or mining. Within Greater Cairo, this ranged from a high 
of 100 per cent (largely in the center of the city) to a low of 41 per cent in the 
northernmost shiakha, which is actually in the governorate of Qalyubia, with an 
average of 97 per cent of each shiakha’s labor force being employed outside of 
agriculture. Even in Menoufia, despite its characterization as a rural governorate, 
the average village had 65 per cent of males employed outside of agriculture, with 
a range from a high of 94 per cent in a northeastern shiakha to a low of 29 per cent 
in the southern tip of the governorate. The bivariate relationship between these two 
traditional measures of urbanness is only 0.580, indicating an interaction between 
the two variables, but also some relative independence: they are not measuring 
exactly the same phenomena. However, the spatial pattern is very similar for the 
two variables with the exception that density varies quite a bit in the center of 
Cairo, whereas the percentage of males employed outside of agriculture does not.  
 A combined index was created by averaging the z-scores calculated for each of 
the two variables. This implicitly weights each variable equally and additively. The 
spatial distribution of this variable is shown in three dimensions in Figure 17.3. 
The general pattern is for the center of the city to be more ‘urban’ with the index of 
urbanness dropping off especially in the northwestern direction, and to be low in 
Menoufia. 
 Now the question is whether these measures of urbanness within Greater Cairo 
and Menoufia can be predicted by variables extracted from the remotely-sensed 
image. We have five predictor variables from the image: (1) the percentage of an 
area that is classified as vegetated (VEG); (2) the percentage of an area that is 
classified as representing soil or materials (such as bricks) made from local soil 
(SOIL); (3) the percentage classified as impervious surfaces (such as concrete or 
asphalt roofs or roads) (IMP); (4) the percentage classified as water or shade 
(which will largely be derived from the shadows of buildings) (SHD); and (5) a 
texture measure that indexes contrast from one pixel to another (CON). 
 Table 17.1 shows the results of the bivariate correlation coefficients between 
each of these variables. Overall it can be seen that the correlations are quite high 
between each of the measures from the satellite imagery and both of the urban 
definition variables. The contrasting-texture variable emerges as the single best 
predictor of both population density and the percentage of males in nonagricultural 
activities, but the soil and vegetation variables are close behind. The closeness of 
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fit of all of these variables suggests two things: (1) the remotely-sensed data can 
provide a good proxy for the census-based variables; and (2) by combining the 
variables we may be in a position to better model the urban-rural continuum. 
 
 

 
 
Figure 17.3 The urban gradient in Cairo and Menoufia measured by a 

variable combining population density and proportion of males 
not in agriculture 

 
 
Table 17.1 

 

Bivariate correlation coefficients between census-based measures 
of urban-rural and the variables derived from the remotely-
sensed imagery 

 Population 
per sq km 

% males 
not in 

agriculture 

Contrast in 
texture 
(CON) 

Vegetation 
(VEG) 

Shade/water 
(SHD) 

Impervious 
surface 
(IMP) 

Soil 
(SOIL) 

Population --- 
per sq km 
% males  
not in agric 
CON  
VEG  
SHD  
IMP  
SOIL  

0.580 

--- 

 
 
 
 
 

-0.617 

-0.827 

--- 
 
 
 
 

-0.613 

-0.803 

0.786 
--- 
 
 
 

-0.472 

-0.596 

0.670 
0.530 

--- 
 
 

0.614 

0.699 

-0.702 
-0.739 
-0.754 

--- 
 

0.578 

0.834 

-0.881 
-0.835 
-0.678 
0.781 

--- 
 
 
 The ability of the remotely-sensed data to predict the census-based variables 
was tested through step-wise ordinary least-squares regression, and the results are 
shown in Table 17.2. With population density as the dependent variable, four of the 
five variables from the image emerge as statistically significant predictors of 
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population density. The most important of these, as measured by the standardized 
beta coefficient, is the amount of contrasting texture (variability at the earth’s 
surface). Texture is negatively associated with density, reflecting the greater 
variability of the surface in those places where density is low. Table 17.2 shows 
that the higher the fraction of impervious surface, the higher the population 
density, as one might expect. Also in the expected direction are the associations of 
more vegetation and more soil with lower densities. Overall, these variables 
combine to explain 46 per cent of the variation from shiakha to shiakha in Greater 
Cairo and Menoufia governorate with respect to population density. The z-
normalized Moran’s I is calculated as a measure of spatial autocorrelation in the 
residuals, and the value of 1.50 suggests that there is not a statistically significant 
amount of spatial autocorrelation.  
 
 
Table 17.2 Predicting census-based urban indices from the remotely-sensed 

images 
 

Predictor 
variable Population density 

Beta Significance 

Dependent variable 

% males not 
in agriculture 

Beta Significance 

Z-normalized average of 
density and % males not 

in agriculture 
Beta Significance 

VEG -0.273 0.000 -0.292 0.000 -0.312 0.000 
SOIL -0.268 0.001 0.283 0.000  ns 
IMP 0.344 0.000  ns 0.212 0.000 
SHD  ns  ns  ns 
CON -0.392 0.000 -0.348 0.000 -0.415 0.000 
Adjusted R2 0.463 0.757 0.742 
Moran's I 1.50 1.14 1.42 
(z-normal) 

 
See Table 17.1 for key to predictor variables. Blank cells indicate that the beta coefficients 
were not statistically significant at or beyond p=.05. 
 
 
 Using the proportion of the male labor force in nonagricultural jobs leads to 
slightly better results (Table 17.2, middle columns). Once again, the contrasting 
texture is negatively associated with nonagricultural economic activity and, not 
surprisingly, the percentage of an area classified as vegetated is strongly and 
negatively predictive of this aspect of being an urban place. The percentage 
classified as soil is positively associated, probably indicating that more builtup 
areas, even when made of brick, are less likely to be associated with agricultural 
occupations. Overall, these variables combine to explain 76 per cent of the 
variability in the nonagricultural percentage, and Moran’s I once again indicates 
that there is no statistically significant pattern of spatial autocorrelation in the 
residuals. 
 The index that combines population density and the proportion of the labor 
force in nonagricultural jobs (Table 17.2, right-hand columns) also picks up the 
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most significant predictor variable from each of those two dependent variables. 
Thus, for the combined index, the most important predictor among the remotely-
sensed image variables is the contrasting texture, followed by the amount of 
vegetation, which is negatively associated with urbanness. The other statistically 
significant predictor variable is the amount of impervious surface, which is 
positively associated. The other variables drop out of the model. Overall, these 
three variables extracted from the remotely-sensed image combine to explain 74 
per cent of the variation in this combined density/nonagricultural index.  
 
Using the Remotely-Sensed Variables to Create an Index of Urbanness 
 
Given the high correlations between the usual indices of urban and the data 
extracted from the remotely-sensed image, I have created an index of urbanness 
that represents the combination of data from the remotely-sensed image and the 
more traditional measures of urban place. Principal components analysis (PCA) 
was used to combine the five variables derived from the remotely-sensed images 
with population density and the proportion of the male labor force engaged in other 
than agriculture. The PCA provides a convenient way to weight each of the 
variables and combines them using the statistically-derived component score 
coefficients. All seven variables loaded into one component, with nearly equal 
component score coefficients. In essence, the resulting index amounts to having 
added up the z-scores for each variable, in much the same way as for the index that 
combined only population density and the proportion of the male labor force 
engaged in nonagricultural activity. 
 This composite index was normalized so that the lowest score was zero and 
the highest score was 1. This produced a mean of 0.35 with a standard deviation of 
0.24. Because of the high intercorrelation among variables, the spatial distribution 
of urbanness is similar to that which was generated by other measures, as can be 
seen in Figure 17.4, in which a three-dimensional map is used so as to better 
visualize the urban gradient. That map shows a gradient of urbanness from the 
center, particularly on the east side of the Nile (the older part of Cairo) spreading 
out especially to the newer urban areas on the west side of the Nile (in Giza 
governorate) and as Cairo stretches into the farmland of the delta, with less 
urbanization in Menoufia. Nonetheless, there is variability in urbanness, even in 
predominantly rural areas. 
 It was hypothesized that these differences in urban characteristics, representing 
aspects of both the built and social environments, would be associated with 
differences in the demographic characteristics of places. Although we do not have 
a great deal of detailed data with which to test this, Table 17.3 shows the average 
values for three different types of population characteristics drawn from the 1996 
census of population, for each of ten decile categories of the urban-gradient index, 
where 1 indicates the lowest level of urbanness among the 614 shiahka in Greater 
Cairo and Menoufia and 10 represents the highest level. The table also shows the 
average values for each variable that is a component of the urban-gradient index. 
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Figure 17.4 Urban-gradient index combining population density, proportion 

of males not in agriculture and remotely-sensed variables 
 
 
Table 17.3 Three demographic characteristics and urban-gradient index 

variables for areas of Greater Cairo and Menoufia, according to 
level on the urban-gradient index 

 
% Variables in the urban-gradient index Urban % % women popu- % grad- women 15+ with Popu- lation males ient  15+ more than lation aged not in CON VEG SHD IMP SOIL in never primary per sq under agri-deciles married education km 15 culture 

Least urban          
1 37.6 21.7 28.5 55.9 1,375 194.8 30.7 41.1 28.2 2.2 
2 37.4 22.2 28.7 61.6 1,700 195.2 27.3 40.1 31.9 2.3 
3 36.9 21.8 31.9 65.3 1,531 194.5 25.9 39.2 34.3 2.4 
4 37.5 22.1 31.8 66.3 1,771 192.1 23.8 38.8 37.6 1.9 
5 37.1 21.8 34.9 73.3 2,067 190.6 22.1 37.1 39.7 2.3 
6 31.9 21.9 41.7 89.0 12,266 105.8 16.6 31.9 45.1 12.1 
7 23.2 27.5 52.0 98.7 35,139 58.9 2.9 29.2 50.3 20.7 
8 23.2 28.2 52.1 99.0 43,782 54.5 1.7 25.8 54.6 22.0 
9 26.8 27.5 49.5 99.0 51,632 54.7 1.2 21.0 59.9 22.7 
10 28.6 25.6 43.1 99.0 79,990 58.0 0.9 15.4 68.5 25.6 
Most urban          

 
See Table 17.1 for key to remotely-sensed variables. 
 
 
 These data show that the percentage of the population that is under 15 years 
old is considerably higher in the lower few deciles, and then drops after the fifth 
decile is reached. Conversely, the percentage of women aged 15 and older who are 
never married (a proxy for age at marriage) is lowest in the least urban deciles and 
then rises beginning in the seventh decile. There is a more striking trend with 
respect to the education of women. In the lowest decile of urbanness only 28 per 
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cent of women aged 15 and older have more than a primary level of education, 
whereas that nearly doubles to 52 per cent by the seventh decile. It can be noted 
that the most urban decile (10) is not the one with the most urban demographic 
characteristics in terms of age structure, marriage patterns, and educational levels. 
This is partly a scale problem, and partly a problem with the influence of 
population density on the index of urbanness.  
 The scale issue relates to the fact that, as can be seen especially in Figure 17.2, 
the shiakha in our data set are not of uniform size. In particular, the shiakhas in the 
older part of Cairo are considerably smaller in area than those in the suburbs. As a 
consequence, these smaller geographic areas can be more influenced by one or two 
large high-rise apartment buildings. In Cairo, as in many cities of developing 
countries, these high-rise blocks tend to house younger couples with their children, 
thus raising the population density (a decidedly urban characteristic) without all of 
the other attendant urban characteristics being present. Indeed, the central part of 
Cairo, near Tahrir Square, would be thought of by most people as the most urban 
part of the city, but its density is lower than in those newer areas with high-rise 
apartments, and it has more vegetation and more textural variability than the newer 
concrete blocks of apartments. 
 These data are suggestive of the idea that, even within the boundaries of a 
large city, an index of urbanness allows us to distinguish among differences in 
social behavior, and even to rethink what ‘urban’ means. The less urban portions of 
Cairo are characterized by demographic features associated with more traditional 
attitudes toward women and families – less value placed on education of women, 
and more value placed on younger age at marriage and family-building activity – 
but so are the most urban places, with the more traditionally urban places between 
those extremes. This sort of variability is instructive because it forces us to 
recognize the spatial variability that exists within an area that is normally thought 
of as monotonically urban.  
 
 
Discussion and Conclusion 
 
Our interest is in developing an urban-gradient index for all inhabited areas 
(excluding wilderness and desert regions), and we have taken some preliminary 
steps to do this in Egypt, using data for Greater Cairo along with data for the 
largely rural governorate of Menoufia. Agricultural areas are usually defined 
almost automatically as rural because of the low population densities that are 
obviously associated with places in which a large fraction of the land is devoted to 
growing crops. However, in many developing countries like Egypt, the population 
in these places resides primarily in villages, rather than being dispersed across the 
countryside, and in fact the population density may be quite high in these places. In 
Menoufia, more than 80 per cent of the shiakha have at least 2,500 people, and 
nearly one-third have population densities within the built area of the village that 
are as high as, or higher than, those found in the suburbs of Cairo. Furthermore, 
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more than 90 per cent of these villages have more than 50 per cent of adult males 
involved in a nonagricultural economic activity. 
 Our analysis shows very clearly that, by every measure of urban, an urban 
gradient exists in the study area, going from least urban in Menoufia to most urban 
in the edges of central Cairo. The percentage of males not in agriculture rises 
slightly within the urban deciles in Menoufia, and then jumps to higher levels in 
the suburbs of Cairo. The percentage of females with more than a primary level of 
education shows a general tendency to rise slightly as the urban gradient increases 
in Menoufia and then it rises steeply with the increase in urbanness in Cairo. The 
percentage of women never married is consistently low in Menoufia and is similar 
to the suburbs of Cairo, but then it rises within Cairo. Conversely, the percentage 
of the population that is younger than age 15 is consistently high in Menoufia and 
similar to the levels in the lower urban deciles of Cairo, and then it drops as the 
urban deciles increase within Cairo. 
 This chapter has thus demonstrated the way in which the extraction of data 
from remotely-sensed images can increase our quantitative understanding of the 
nature of urban settlements. Nevertheless, there are many limitations to the 
analysis. The analysis is particularly limited by the modifiable areal unit problem 
(MAUP) defined well, for example, by Fotheringham and Wong (1991). The areas 
for which we have census data are those places that are defined for us by 
CAPMAS (Central Agency for Population Mobilisation and Statistics). The areal 
extent of newly defined places in the suburbs is very different from the older places 
in the center of the city and this complicates the analysis. On the other hand, if we 
are confident that the data from the remotely-sensed image can provide us with 
proxy data for human settlements, then we are in a position to define regular grids 
on the image and conduct an analysis that would dramatically reduce the impact of 
the MAUP because it would not be dependent on the census data and thus on the 
census boundaries. Our results suggest that the remotely-sensed imagery offers a 
very promising set of possibilities in that regard. 
 How to create a quantitative index of the urban gradient that best combines the 
variables is also open for discussion. We have employed an essentially reductionist 
approach in this analysis by using principal components analysis, but there are 
numerous other ways that indices could be constructed. The task ahead will be to 
see if several different methods yield similar results, increasing our confidence in 
the robustness of the use of remotely-sensed images. Although we cannot yet claim 
that the same classification scheme will lead to the same interpretation of urban 
areas in every area of the world, a fuzzy-set approach may allow us to make similar 
kinds of distinctions about urbanness in geographically very different places. Thus, 
we were able to show that Menoufia is predictably less urban than Cairo, but that 
the more urban places in Menoufia are similar to the less urban places in Cairo. 
 Data from the remotely-sensed images can be used in the analysis of urban 
processes such as urban sprawl (including exurbanization and an assessment of 
periurban areas), counterurbanization, and multinucleation. We require data from 
two or more dates in order to conduct such analyses, because it is change in places 
over time that we must measure. These analyses essentially measure the impact of 
human settlement by quantifying the change in the environment occasioned by 
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human activity. This serves as a remotely-derived proxy for human behavior taking 
place on the ground that we might not otherwise be in a position to measure. Thus, 
the analysis of remotely-sensed images, and their inclusion in a geographic 
information system, offers us an additional set of data and insights by which to 
understand the nature and dynamic processes of human settlements and may offer 
ways of detecting change in the urban environment that is not measurable by other 
means. 
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