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The effect of input data transformations on object-based image analysis
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(Received 9 June 2010; in final form 4 October 2010)

The effect of using spectral transform images as input data on segmentation

quality and its potential effect on products generated by object-based image

analysis are explored in the context of land cover classification in Accra, Ghana.

Five image data transformations are compared to untransformed spectral bands in

terms of their effect on segmentation quality and final product accuracy. The

relationship between segmentation quality and product accuracy is also briefly

explored. Results suggest that input data transformations can aid in the delinea-

tion of landscape objects by image segmentation, but the effect is idiosyncratic to

the transformation and object of interest.

1. Introduction

In response to the broad availability of high spatial resolution remote sensing data and

the subsequent evocation of the ‘H’ resolution scene model (Strahler et al. 1986), object-

based image analysis (OBIA) is becoming more prevalent than at any other time in its

greater than 30-year history (Rosenfeld and Davis 1979, Woodcock and Harward 1992,
Blaschke and Strobl 2001, Benz et al. 2004, Blaschke et al. 2008). Although a variety of

techniques and software have been presented as OBIA (see Blaschke et al. (2008) for

review), the regionalization (i.e. segmentation) of image data is a principal step to

OBIA, typically followed by classification and generalization operations (Rosenfeld

and Davis 1979). Segmentation determines the spatial units, and subsequently the scale

at which image analyses are conducted, and therefore has the potential to affect the

accuracy of all subsequent analysis and final products (Openshaw 1984, Addink et al.

2007). Image segmentation is the foundation to most OBIA; the effect of segmentation
quality on the potential OBIA product accuracy has recently been noted by several

authors (e.g. Addink et al. 2007, Kim et al. 2009, Liu and Xia 2010).

This study investigates the effect of incorporating spectral transform images on the

accuracy of segmentation (i.e. how well segmentation boundaries reflect the bound-

aries of objects of interest in the scene) and final product accuracy. We hypothesize

that spectral transformations (e.g. principal components, vegetation indices, material

fractions derived through spectral mixture analysis) can improve segmentation accu-

racy, and subsequently final product accuracy, when compared to spectral data alone.
To test this hypothesis, we compare segmentations of QuickBird multispectral ima-

gery of Accra, Ghana, in the context of mapping urban land cover objects. Several

data transformations commonly used to enhance landscape object discrimination in
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remote sensing data are explored: principal component analysis (PCA), spectral

mixture analysis (SMA) (Adams et al. 1986) of vegetation, impervious and soil

fractions and two common vegetation indices – normalized difference vegetation

index (NDVI) and visible atmospherically resistant index (VARI) (Gitelson et al.

2002). To permit quantitative comparison of segmentation results, we validate the
segmentation quality using an area-based error analysis in a manner proposed by

Zhan et al. (2005). The relationship between segmentation accuracy and final product

accuracy is preliminarily assessed using least squares regression. Collectively, this

research explores the effect of varying input data on segmentation quality and,

subsequently, classification products generated using OBIA techniques.

This study was conducted within the context of a larger effort to assess the feasibility

of mapping health indicators in Accra, Ghana, using remote sensing data. Specifically,

the study is motivated by the need to accurately delineate the relative proportion of
trees and buildings within neighbourhoods of the Accra metropolitan area for use as

indicators of social phenomena relating to health outcomes (Stow et al. 2010).

2. Background

OBIA offers profound advantages over traditional pixel-based classification meth-

ods, particularly for high spatial resolution image data. It permits the use of image

information beyond ‘colour’, ‘tone’ and ‘time’ (e.g. shape, pattern, shadow, associa-
tion/site) (Benz et al. 2004), represents an explicit implementation of the H-resolution

scene model (Strahler et al. 1986) and has been shown to offer improved classification

accuracies over pixel-based approaches in many applications (Neubert and Meinel

2003, Bocka et al. 2005).

Most OBIA techniques rely on image segmentation to delineate image regions, on

which all subsequent analyses are performed (Abkar et al. 2000, Baatz and Schape

2000, Blaschke and Strobl 2001, Hay et al. 2003, Benz et al. 2004). The segments

define the unit of analysis and therefore affect not only the accuracy of classification
results (Addink et al. 2007), but according to modifiable area unit problem (MAUP),

can determine the results (Openshaw 1984). There have been attempts to identify the

‘intrinsic scale’ of image objects (Hay et al. 2003, p. 328), but most research has relied

on trial and error to set parameters that delineate regions corresponding to landscape

objects of a given minimum mapping unit (Benz et al. 2004, Moller et al. 2007).

Definiens multi-resolution (Baatz and Schape 2000, Benz et al. 2004) segmentation

results are affected by both user specified constraint parameters (i.e. scale factor H,

shape vs. colour weighting, and compactness vs. smoothness weighting) and the data
on which segmentation is based. The multi-resolution image segmentation algorithm

within Definiens employs a region-based, local mutual best fitting approach (see

Baatz and Schape (2000) for details). Several authors have investigated the effect of

the Definiens multi-resolution user parameters on segmentation and classification

accuracy (Lucieer and Stein 2002, Neubert and Meinel 2003, Moller et al. 2007), but

research interrogating the utility of spectral transformations for image segmentation

is rare (Trias-Sanz et al. 2008).

Segmentation is typically performed on panchromatic or multi-spectral waveband
inputs (Definiens 2003, Hay et al. 2003, Benz et al. 2004), but there is evidence that

spectral transform inputs may yield more reliable image segmentation results

(Trias-Sanz et al. 2008). Given this, and the established ability of input transforma-

tions to improve image classification (Pereira 1999), change detection (Rogan et al.

22 C.D. Lippitt et al.
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2002) and image-based material measurement (Small 2001, Stow et al. 2005), we

investigate the effect of several common remote sensing data transformations (i.e.
SMA, PCA, NDVI and VARI) on segmentation and final OBIA product accuracy.

Table 1 provides a summary of the spectral transformations tested in this study.

3. Methods

QuickBird multispectral image data with 2.4 m spatial resolution were acquired on 12

April 2002 for most of Accra, Ghana (see figure 1), and used to derive transformations

for all segmentation and classification analyses. Linear spectral unmixing

(an approach to SMA) was conducted on a per-pixel basis using four in situ end-

members: Vegetation, Dark Impervious, Bright Impervious and Soil (Ridd 1995, Wu
and Murray 2003). Vegetation indices and principal components 1–3 were derived

using ERDAS Imagine 9.3 (ERDAS Inc., Norcross, GA, USA), whereas SMA was

conducted in ENVI 4.5 (ITT Visual Information Solutions, Boulder, CO, USA).

Pan-sharpened (,0.6 m) multispectral data were used to derive reference data for

the segmentation and classification processes. Ten segmentation calibration objects

for each of the two dominant landscape features, trees and buildings, were generated

by heads-up digitizing based on visual interpretation of pan-sharpened QuickBird

false colour infrared composite images. Selection of calibration objects for segmenta-
tion was constrained to objects ranging from 40 to 80 pan-sharpened multispectral

(0.6 m) pixels in size and were selected to represent the various object-background

combinations represented in the scene.

Each transformed image was segmented individually. Within the Definiens profes-

sional 5.0 software (Definiens, München, Germany), multi-resolution segmentation

parameters (i.e. scale, shape/colour and smoothness/compactness) were manipulated

iteratively to optimize the segmentation products through visual comparison with

associated calibration objects by boundary coincidence with the segment of dominant
overlap. Table 2 shows the parameters used to generate the ‘optimal’ segmentation for

each transformation input type.

Segmentation products were validated using ten randomly selected independent

reference objects for each object type. Segmentation validation objects were selected

Table 1. Description of input data transformations.

Feature of interest Input spectral wavebands No. of output* data layers

Spectral – 1–4 4
SMA-VIS Tree/Building 1–4 4
NDVI Tree 3,4 1
VARI Tree 1–3 1
PC1 Building 1–4 1
PC1–PC3 – 1–4 3

Notes: ‘Spectral’: QuickBird multispectral wavebands 1–4
‘SMA-VIS’: Vegetation, Dark Impervious, Light Impervious and Vegetation fractions
produced by linear spectral unmixing
‘NDVI’: Normalized difference vegetation index
‘VARI’: Visible atmospherically resistant index
‘PC1’: First principal component
‘PC1–PC3’: First three principal components

Input transformations and image segmentation 23
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Table 2. Definiens segmentation parameters for each spectral
transformation input type.

Scale Shape Compactness

Spectral 13 0.5 0.3
SMA-VIS 1 0.1 0.2
NDVI 10 0.1 0.5
VARI 10 0.1 0.5
PC1 7 0.1 0.2
PC1–PC3 5 0.1 0.2

Note: Refer table 1 for variable definitions.

Figure 1. QuickBird panchromatic waveband of the study region of Accra, Ghana.
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under the same constraints as segmentation calibration objects. Objects of maximum

overlap were compared with reference objects and area of overlap, omission error and

commission error were calculated as percentages of the union of reference and

segmented objects and are summarized in table 3. Figure 2 illustrates the calculation

of area overlap, omission error and commission error.
Land cover classification was conducted on all segmentation results using a nearest

neighbour (Euclidean distance) classifier on the four multispectral segment means, to

ensure that differences in final product accuracy are attributable only to the differences

in the segmentation. Ten sample objects per class were identified based on maximum

overlap with reference polygons described above. The mapped classes include Trees,

Grass, Water, Bare Soil, Asphalt and Building. The Building class was classified as

Bright Building, Dark Building and Composite Building sub-classes, and grouped into

a single Building class in the post-classification generalization phase. Although Tree
and Building were the target classes, Grass, Water, Bare Soil and Asphalt were included

to improve the definition of Tree and Building classes in feature space.

OBIA products were validated using ten randomly selected independent ground

reference objects per class. Per-pixel error analysis (overall map accuracy and kappa

Table 3. Segmentation accuracy percentages based on correspondence with ten validation
objects for each object type and spectral transformation.

Buildings Trees

Correct
(%)

Commission
error (%)

Omission
error (%)

Correct
(%)

Commission
error (%)

Omission
error (%)

Spectral 60 20 20 52 36 12
SMA-VIS 62 8 30 65 15 20
NDVI 24 74 3 59 24 17
VARI 27 70 4 52 13 35
PC1 35 8 57 35 22 43
PC1–PC3 55 7 38 47 8 45

Note: Refer table 1 for variable definitions.

b

Reference
polygon

Segment

Intersection

a

Figure 2. Schematic demonstrating the estimation of segmentation product accuracy; com-
mission (a), omission (b) and intersection estimated by comparing percentage agreement and
disagreement between segment (dark) and reference objects (white).
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index of agreement) was conducted for all classes. Given that the desired information

product is the relative proportion of Trees and Buildings per neighbourhood and not

an exact representation of the size or shape of these objects, pixel-based accuracy

assessment is appropriate. Segmentation ‘accuracy’ was then related to classification

accuracy and kappa index of agreement for the Tree and Building classes through
least squares linear regression.

4. Results

Segmentation accuracy results for the Tree and Building classes are presented in

table 3. Overall classification accuracy results and results for Tree and Building classes

are summarized in table 4. Spectral transform images yielded higher segmentation

accuracy compared with multispectral data inputs, but the effect is dependent on the

object and class of interest. Most transform inputs achieved higher accuracy for either

tree or building segmentation at the expense of the other.
Vegetation indices resulted in relatively high tree object segmentation accuracies

(NDVI ¼ 59%, VARI ¼ 52%) compared with building objects (24% and 27%,

respectively), whereas principal component transformations resulted in higher build-

ing object segmentation accuracies compared with trees (table 3). Relative to spectral

bands, only SMA feature inputs yielded higher segmentation accuracies for buildings,

whereas SMA and NDVI resulted in higher segmentation accuracies for trees. This

suggests that transformations developed to enhance the discrimination of landscape

features using pixel-based techniques can aid in the delineation of those features using
OBIA techniques.

Objects segmented using spectral data showed the highest overall classification

accuracy and kappa (table 4). VARI yielded higher tree class kappa values than

spectral data (0.95 and 0.90 respectively). Products generated through segmentation

of the first three principal components had a higher building class kappa value (0.94)

than the other transformations (0.75–0.81).

Least squares trends between segmentation accuracy and overall kappa classifica-

tions suggest that there is a positive relationship between segmentation and classifica-
tion accuracy, but more samples would be required to test the significance of that

relationship. Positive trend lines for both the Tree and Building classes support the

hypothesis that final product accuracies are dependent on segmentation quality,

supporting the findings of other recent research (e.g. Addink et al. 2007, Liu and

Xia 2010).

Table 4. Classification accuracy statistics.

5-Class overall
(%)

5-Class kappa
index

Trees kappa
index

Buildings kappa
index

Spectral 94 0.92 0.90 1.00
SMA-VIS 85 0.81 0.86 0.81
NDVI 85 0.80 0.90 0.75
VARI 86 0.82 0.95 0.77
PC1 81 0.76 0.87 0.81
PC1–PC3 87 0.83 0.75 0.94

Note: Refer Table 1 for variable definitions.
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5. Discussion and Conclusions

In summary, spectral transformations can improve segmentation accuracy but the

improvement seems to be idiosyncratic to the object of interest and the type of

transformation. The identification of image transformations appropriate for the

delineation of specific landscape objects seems particularly promising; further inves-

tigation into the use of image transformations to improve segmentation quality is

warranted. Segmentation accuracy can have an effect on classification accuracy,

highlighting the need to explore the quantification of segmentation quality and to

define rigorous procedures for optimizing image segmentation based on the objects
and scale of interest.

The correlation between segmentation accuracy and kappa for the final OBIA

product is weaker than one would reasonably expect (Addink et al. 2007), particularly

for the tree class; in one case (i.e. PC1, trees) a segmentation accuracy of 34%

produced a kappa of 0.87. At first glance this would seem to refute the logical

conclusion that product accuracy is dependent on segmentation quality (Addink

et al. 2007). Note, however, that segments may have been, and in many cases were,

smaller than the reference object they were compared with, resulting in high omission
error (e.g. PC1 and PC1-3). For segmentations that are finer scale than the objects of

interest, however, there is not necessarily a loss in classification accuracy (Liu and Xia

2010), suggesting that a commission error-only accuracy metric may be more appro-

priate for assessing the relationship between segmentation quality and final product

accuracy.

Acknowledgement

This research was funded partially by grant number R21 HD046612-01 from the

National Institute of Child Health and Human Development.

References

ABKAR, A.-A., SHARIFI, M.A. and MULDER, N.J., 2000, Likelihood-based image segmentation

and classification: a framework for the integration of expert knowledge in image

classification procedures. International Journal of Applied Earth Observation and

Geoinformation, 2, pp. 104–119.

ADAMS, J.B., SMITH, M.O. and JOHNSTON, P.E., 1986, Spectral mixture modeling: a new analysis of

rock and soil types at the viking lander site. Journal of Geophysical Research, 91, p. 14.

ADDINK, E.A., DE JONG, S.M. and PEBESMA, E.J., 2007, The importance of scale in object-based

mapping of vegetation parameters with hyperspectral imagery. Photogrammetric

Engineering & Remote Sensing, 73, pp. 905–912.

BAATZ, M. and SCHAPE, A., 2000, Multiresolution segmentation – an optimization approach for

high quality multi-scale image segmentation. In Angewandte Geographische Informationsv-

erarbeitung, XII, pp. 12–23.

BENZ, U.C., HOFFMAN, P., WILLHAUCK, G., LINGENFELDER, I. and HEYNEN, M., 2004, Multi-

resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready infor-

mation. ISPRS Journal of Photogrammetry & Remote Sensing, 58, p. 19.

BLASCHKE, T., LANG, S. and HAY, G.J., 2008, Object-based image analysis: spatial concepts for

knowledge-driven remote sensing applications. In Lecture Notes in Geoinformation and

Cartography, p. 818, (London: Springer).

BLASCHKE, T. and STROBL, J., 2001, What’s wrong with pixels? Some recent developments

interfacing remote sensing and GIS. GIS – Zeitschrift für Geoinformationssysteme, 14,

pp. 12–17.

Input transformations and image segmentation 27

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 1
0:

03
 0

8 
A

ug
us

t 2
01

1 



BOCKA, M., XOFISB, P., MITCHLEYB, J., ROSSNERC, G. and WISSENC, M., 2005, Object-oriented

methods for habitat mapping at multiple scales – case studies from Northern Germany

and Wye Downs, UK. Journal for Nature Conservation, 13, p. 14.

DEFINIENS, 2003, Definiens User Guide 4.0 (Munich, Germany: Definiens).

GITELSON, A.A., STARK, R., GRITS, U., RUNDQUIST, D., KAUFMAN, Y. and DERRY, D., 2002,

Vegetation and soil lines in visible spectral space: a concept and technique for remote

estimation of vegetation fraction. International Journal of Remote Sensing, 23, pp.

2537–2562.

HAY, G.J., BLASCHKE, T., MARCEAU, D.J. and BOUCHARD, A., 2003, A comparison of three

image-object methods for the multiscale analysis of landscape structure. ISPRS Journal

of Photogrammetry and Remote Sensing, 57, pp. 327–345.

KIM, M., MADDEN, M. and WARNER, T.A., 2009, Forest type mapping using object-specific

texture measures from multispectral Ikonos imagery: segmentation quality and image

classification issues. Photogrammetric Engineering & Remote Sensing, 75, pp. 819–829.

LIU, D. and XIA, F., 2010, Assessing object-based classification: advantages and limitations.

Remote Sensing Letters, 1, pp. 187–194.

LUCIEER, A. and STEIN, A., 2002, Existential uncertainty of spatial objects segmented from

satellite sensor imagery. IEEE Transactions on Geoscience and Remote Sensing, 40, pp.

2518–2521.

MOLLER, M., LYMBURNER, L. and VOLK, M., 2007, The comparison index: a tool for assessing

the accuracy of image segmentation. International Journal of Applied Earth Observation

and Geoinformation, 9, pp. 311–321.

NEUBERT, M. and MEINEL, G., 2003, Evaluation of segmentation programs for high resolution

remote sensing applications. In Proceedings of the Joint ISPRS/EARSeL Workshop ‘High

Resolution Mapping from Space 2003’, 6–8 October 2003, Hannover, Germany, p. 8.

OPENSHAW, S., 1984, Ecological fallacies and the analysis of areal census-data. Environment and

Planning A, 16, pp. 17–31.

PEREIRA, J.M.C., 1999, A comparative evaluation of NOAA/AVHRR vegetation indexes for

burned surface detection and mapping. IEEE Transactions on Geoscience and Remote

Sensing, 37, pp. 217–226.

RIDD, M.K., 1995, Exploring a V–I–S (vegetation–impervious–surface-soil) model for urban

ecosystem analysis through remote sensing: comparative anatomy for cities.

International Journal of Remote Sensing, 16, pp. 2165–2185.

ROGAN, J., FRANKLIN, J. and ROBERTS, D.A., 2002, A comparison of methods for monitoring

multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of

Environment, 80, pp. 143–156.

ROSENFELD, A. and DAVIS, L.A., 1979, Image segmentation and image models. Proceedings of

the IEEE, 67, p. 8.

SMALL, C., 2001, Estimation of urban vegetation abundance by spectral mixture analysis.

International Journal of Remote Sensing, 22, p. 29.

STOW, D., LIPPITT, C.D. and WEEKS, J., 2010, Delineation of neighborhoods of Accra, Ghana

based on Quickbird satellite data. Photogrammetric Engineering & Remote Sensing, 76,

pp. 907–914.

STOW, D., NIPHADKAR, M. and KAISER, J., 2005, MODIS-derived visible atmospherically

resistant index for monitoring chaparral moisture content. International Journal of

Remote Sensing, 26, pp. 3867–3873.

STRAHLER, A.H., WOODCOCK, C.E. and SMITH, J.A., 1986, On the nature of models in remote-

sensing. Remote Sensing of Environment, 20, pp. 121–139.

TRIAS-SANZ, R., STAMON, G. and LOUCHET, J., 2008, Using colour, texture, and hierarchial

segmentation for high-resolution remote sensing. ISPRS Journal of Photogrammetry

and Remote Sensing, 63, pp. 156–168.

28 C.D. Lippitt et al.

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 1
0:

03
 0

8 
A

ug
us

t 2
01

1 



WOODCOCK, C. and HARWARD, V.J., 1992, Nested-hierarchical scene models and image segmen-

tation. International Journal of Remote Sensing, 13, pp. 3167–3187.

WU, C. and MURRAY, A.T., 2003, Estimating impervious surface distribution by spectral

mixture analysis. Remote Sensing of Environment, 84, pp. 493–505.

ZHAN, Q.M., MOLENAAR, M., TEMPFLI, K. and SHI, W.Z., 2005, Quality assessment for

geo-spatial objects derived from remotely sensed data. International Journal of

Remote Sensing, 26, pp. 2953–2974.

Input transformations and image segmentation 29

D
ow

nl
oa

de
d 

by
 [

W
es

t V
ir

gi
ni

a 
U

ni
ve

rs
ity

] 
at

 1
0:

03
 0

8 
A

ug
us

t 2
01

1 


