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ABSTRACT: 
This paper discusses the implementation of an integrated set of methods used to explore the relative importance of the social 
characteristics and the physical conditions of urban morphology in shaping the spatial patterns of urban vulnerability to earthquake 
hazards in Los Angeles County. These methods include: (1) the development of an index for social vulnerability at the census tract 
level based on the 1990 population census, (2) the normalization of remotely sensed measures that describe the composition of 
census tracts in terms of the fractional abundance of urban land cover extracted through the spectral mixture analysis of a Landsat 
Thematic Mapper (TM) image, (3) the utilization of landscape pattern metrics for deriving new variables that describe the urban 
spatial structure of census tracts based on urban land cover fractions, and (4) the use of a spatial filtering technique to resolve the 
spatial autocorrelation problem among the independent variables. The paper begins with an introduction about urban vulnerability, 
highlighting the results of previous investigations conducted by the present authors, followed by an outline of the methods utilized 
in the present study. The remaining sections of the paper introduce the statistical models in which the remotely sensed variables 
are employed, demonstrate the results of such models, and discuss the conclusions that can be drawn from these results. 

1.	 INTRODUCTION 

1.1 Background 	

varying patterns of urban vulnerability and their underlying 
engineering factors and the social conditions are manifested in 
the spatial structure of urban areas. 
We conceptualize urban vulnerability as a measure of the 
degree of coping abilities of human and physical systems of the 
urban place that are consistent with the principles of local 
sustainability. We believe that a geographically-centered 
approach that focuses on the vulnerability of urban place and 
combines elements from the engineering and social paradigms 
can help fill the gap between them and will pave the way for a 
better understanding of how vulnerability patterns evolve in 
urban areas. This approach emphasizes the use of geo-
referenced resources that should be available to planners and 
decision-makers in any reasonably large urban area. These 
include an assessment of structural (including geologic and 
infrastructural) vulnerability of each neighborhood to potential 
earthquake hazards that might occur, and an assessment of 
sociodemographic vulnerability within each neighborhood to 
hazards. These data are drawn from engineering and land use 
coverages, remotely sensed data, census data, and the results of 
hazards risk modeling, and then are incorporated into a GIS 
database environment for spatial analysis and interpretation. 
This paper represents the last of a three-phase ongoing project 
aiming at revealing the link between differential social 
vulnerability in urban places and unsustainable development 
practices as represented by features from the urban 
environment. In the first phase of the project, the present 
authors developed a GIS-prototype that combined elements 
from the techniques of spatial multicriteria analysis and fuzzy 
logic to assess the spatial distribution of vulnerability levels in 

Urban vulnerability to natural hazards such as earthquakes is a 
function of human behavior. It describes the degree to which 
socioeconomic systems and physical assets in urban areas are 
either susceptible or resilient to the impact of natural hazards. 
In this paper, we tackle the question of vulnerability within the 
contemporary realm of American cities. As American cities 
become geographically more dispersed and increasingly
complex with respect to infrastructure and the built
environment, more and new kinds of urban vulnerabilities are 
brought  about  by  the  increasing dependence of 
communities on technology  and  more complex interactions 
within the urban systems. Today, the g	 eography of
vulnerability in the United States stretches from coast to coast, 
from city to city, and from neighborhood to neighborhood 
within cities. Although one cannot say that there exists a non-
vulnerable urban community in the United States, there are 
clearly places that are more vulnerable than others. 
What accounts for  spatial  variability  of  urban  vulnerability 
in and within  American  cities?  How does the engineering of 
the constructed environment increase or decrease urban
vulnerability, and how much of vulnerability is dependent 
upon  the  socioeconomic  and demographic  pr	 ofile  of  the 
community? What is the vulnerability that derives from the 
interaction of the built and the social environments? Can we 
assess the relative importance of these factors in measurable 
and standardized ways? This paper attempts to answer some of 
these questions by developing an understanding of how the 
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the Los Angeles metropolitan (Rashed and Weeks, 2003). In 
the second phase, we adopted a multiple endmember spectral 
mixture analysis (MESMA) approach to map the physical 
composition of urban morphology in Los Angeles using 
Landsat TM image acquired in 1990 (Rashed et al., 2003). In 
this paper, we report the results of the last phase of the project 
in which we tested the basic hypothesis that differential social 
vulnerability is reflected in the environmental relations and the 
spatial structure of urban neighborhoods (i.e., geographic 
conditions, building materials, structure of open spaces, 
housing densities, inaccessible neighborhoods, amount and 
types of vegetation). Many of these aspects are ‘physically’ 
represented by certain urban features and land covers, 
suggesting the notion that social vulnerability to urban 
earthquakes may be examined through advanced remote 
sensing data capturing and processing techniques, and 
validated with in situ data  all grounded in a remote sensing 
scene model (Strahler et al., 1986) and integrated into a GIS-
spatial analytical framework. The value of remote sensing data 
lies in providing timely and spatially explicit variables 
associated with urban attributes and human activities (e.g., 
Jensen and Cowen, 1999). The incorporation of these variables 
into a GIS with population data offers a way to analyze the 
spatial association between social factors and vulnerability 
indicators from the built and natural environments. 

1.2 Results from previous studies 

As indicated above, the present paper utilizes the results from 
two previous studies, the details of which are reported in 
Rashed and Weeks (2003) and Rashed et al. (2003) 
respectively. The first study originated from a pilot case study 
for data on the 1994 Northridge Earthquake in Los Angeles 
County which was used to develop and test a prototype for 
urban vulnerability assessment based on fuzzy logic and spatial 
multicriteria evaluation (Rashed and Weeks, 2003). The 
overall objective of the work conducted was to control for the 
hazards effect within the region, such that loss estimates 
generated by simulators of hazards effects can directly be 
interpreted in terms of variation in vulnerability. The work 
pioneered new usage of a US federally funded GIS tool called 
HAZUS (http://www.fema.gov/hazus/), originally developed to 
assess losses from seismic hazards and now expanded to 
encompass other hydrologic and wind hazards in the United 
States. The Rashed-Weeks model used HAZUS to generate a 
number of risk scenarios for different earthquakes within the 
region, through which “hot spots” of vulnerability were derived 
from the collective results of simulation. The model 
incorporated many theoretical constructs from Menoni and 
Pergalani’s (1996) framework of urban vulnerability and 
integrated them with several decision-support methodologies 
such as Satty’s (1980) analytic hierarchy process (AHP) to 
derive a quantitative measure of vulnerability. The resulting 
measures were more representative of the inherent weakness in 
the urban system than those resulting from the simple overlay 
of hazard zones and urban elements. 
In the second study, the results of the model were further 
utilized to exploit the capabilities of remote sensing to obtain 
information about the composition and structural patterns of 
urban land cover through the application of multiple 
endmember spectral mixture analysis (MESMA) and landscape 
metrics (Rashed et al., 2003). The work conducted was 
predicated on the idea that urban landscape results from an 
aggregation of different components of land cover and urban 

materials, none of which may be important when studied 
individually (Ridd, 1995; Rashed et al., 2001; Rashed et al., 
2002). Rather, the significance of these components arises 
from their mutual association and from the way they 
interweave with each other to structure the morphology of the 
urban place (Pesaresi and Bianchin, 2001). A recurrent theme 
in several studies on urban remote sensing has been related to 
the derivation of summary indicators of the urban physical 
components from remote sensing data. This type of analysis 
has traditionally been limited due to the spectral heterogeneity 
of urban features in relation to the spatial resolution of the 
remote sensors (Weber, 1994). This is especially true in the 
context of multispectral images with medium spatial resolution 
such as those provided by Landsat, SPOT, and Indian 
satellites. Because of this spectral heterogeneity, there is a 
need to deal with a complex mixture of spectral responses 
(Forster, 1985). With the presence of spectral mixing in the 
pixels, the identification of urban land cover using per-pixel 
analytical techniques becomes very difficult since the 
continuum of land cover cannot be divided readily into discrete 
classes as required by these techniques. 
Spectral mixture analysis (SMA) is a group of techniques that 
have been proposed to provide soft analysis of mixed pixels by 
transforming image values to physical variables. We used a 
modified SMA technique called multiple endmember spectral 
mixture analysis (MESMA) to derive comparable physical 
measures of urban places in Los Angeles County. The MESMA 
approach, originally developed by Roberts et al. (1998b) is 
based on the concept that, although the spectrum in any 
individual pixel can be modeled with relatively few 
endmembers, the number and type of endmembers are variable 
across an image. In this sense, MESMA can be described as a 
modified linear SMA approach in which many simple SMA 
models are first calculated for each pixel in the image. The 
objective is then to choose, for every pixel in the image, which 
model amongst the candidate models provides the best fit to 
the pixel spectrum while producing physically reasonable 
fractions. The resultant values can be normalized and 
aggregated at the urban place level to describe the composition 
of the urban place in terms of indices of land cover abundance 
that can readily be linked to measures of vulnerability and 
other engineering and social variables. 

2. METHODS AND DATA 

2.1 Overview 

To test our hypothesis, that the physical and social conditions 
of an urban place are so inextricably bound together in many 
disaster situations that we can use the former as indicative of 
the latter, we examined the relationship between the index of 
higher vulnerability produced for Los Angeles County in 
Rashed and Weeks (2003) and the spatial distribution of 
wealth in this region. The distribution of wealth in society is 
perhaps the most obvious variable, among several possible 
others (such as political rights, governmental compensations, 
etc), that holds a direct relationship with the access to 
resources required to recover from the impact of a damaging 
event such as an earthquake hazard. We tested the hypothesis 
of this study first by testing the null hypothesis that the 
distribution of wealth (taken as a proxy for access to resources 
as a measure of vulnerability) and the index of higher 
vulnerability are not significantly correlated in Los Angeles 
County, and second by examining the extent to which the 
remotely sensed measures we produced in Rashed et al. (2003) 



explain these two measures of vulnerability. In this section, we 
discuss the methods used to prepare the variables to be 
incorporated in the statistical models employed to answer the 
above-mentioned questions. These methods describe: (1) the 
development of an index of wealth at the census tract level in 
the study area based on the 1990 population census, (2) the 
normalization of MESMA fractions at the census tract level, 
(3) the utilization of landscape pattern metrics for deriving new 
variables that describe the urban spatial structure of census 
tracts in terms of urban land cover, and (4) the use of a spatial 
filtering technique to resolve the spatial autocorrelation 
problem among the independent variables. 

2.2 Deriving an index of wealth for Los Angeles County 

Information on wealth was used in this study as a proximate 
determinant of access to resources, which in turn was used as 
an indication of the distribution of social vulnerability. To 
achieve this, data were used from the US Census Bureau’s 
Survey of Income and Program Participation (SIPP) to create 
an index of wealth that incorporates income in conjunction 
with the age and race factors. From these measures, the ratio of 
wealth to income was calculated at each income level by race, 
and by age group. The next step was to use data from the 1990 
Public Use Microdata Sample (PUMS) to convert these two 
sets of data (i.e., ratio of wealth to income by race and by age 
group derived from the SIPP) to the closest income categories 
that are available in the 1990 census of the study area. The 
PUMS data represent a random 5% sample of the long-form 
questionnaires from the 1990 census, stripped of personal 
identifiers and grouped in geographic units of at least 100,000 
people (PUMAs or Public Use Microdata Areas) to protect 
confidentiality. The two sets of income quintiles (those by race 
and those by age) derived from the SIPP data were converted to 
their closest income categories and the averaged values 
represented multipliers to be applied to a table that included 
information on the number of households by income category 
and race by age for each census tract, using the 1990 PUMS 
data for Los Angeles County. Finally, the average household 
wealth was calculated for each census tract that represented the 
average wealth of households in that census tract weighted by 
the income, race, and age of householder.  The outcome of this 
process was a wealth index for Los Angeles County, which we 
utilized as an indication of the overall level of access to 
resources (and hence social vulnerability) in each census tract.  

2.3 Normalizing MESMA fractions 

The results from the remote sensing analysis conducted in our 
previous MESMA study (Rashed et al., 2003) were used to 
describe spatial variation in the physical conditions between 
the census tracts in Los Angeles County in 1990. Two 
approaches have been examined to achieve this goal. The first 
approach, described in this subsection, was the calculation of 
an average normalized measure per census tract for each of 
four categories of urban land cover: vegetation, soil, 
impervious surface, and shade. The second approach, described 
in the following subsection, was the derivation of second-order 
measurements from MESMA fractions that describe the spatial 
structure of the census tracts in terms of these fractions.     
In the first approach, fractional abundances of vegetation, 
impervious surface, soil and water/shade were first converted 
into raster grids. Next, a polygon coverage representing the 
census tracts was laid over each of the four grids and a census 
code was assigned to each pixel according to which census 

tract that pixel was located within. The fractional abundance of 
each land cover category was then summed up based on the 
census tract codes and the results were normalized by 
calculating the ratio of the summed fractional abundance to the 
census tract area. The end product of this process was a 
normalized value (ranging from 0 to 100) per census tract for 
each of the four land cover categories, indicating the average 
abundance of the land cover within that tract. Thus, these 
normalized values represented indices of land cover abundance 
that can readily be linked to the index of vulnerability and 
other social variables reported at the census tract level. 

2.4 Applying landscape pattern metrics to MESMA 
fractions 

The use of landscape metrics in the analysis of urban landscape 
patterns is a relatively new topic and few studies have been 
published in this regard generally (e.g., Geoghegan et al., 
1997; Alberti and Waddell, 2000; Parker et al., 2001), and 
even fewer with the specific use of remotely sensed measures 
(e.g., Herold et al., 2002; Herold et al., submitted). In this 
research, we used a subset of landscape metrics as a way of 
quantifying the configuration and composition of spatial 
variation in the physical conditions in Los Angeles in terms of 
MESMA land cover fractions. Calculating these metrics at the 
census tract level (i.e., each tract is considered as collection of 
land cover patches) provides an additional means of 
establishing and testing the link between vulnerability and the 
social and physical conditions of urban places.  
Landscape metrics are indices developed for categorical map 
patterns and their development has been based on both 
information theory and fractal geometry (Herold et al., 2002; 
McGarigal et al., 2002). Categorical map patterns represent 
data in which the ecosystem property of interest is represented 
as a mosaic of patches. Patches represent discrete areas of 
relatively homogeneous environmental conditions, the 
definition of which is artificially imposed according to a 
phenomenon of interest and only meaningful when referenced 
to a particular scale (McGarigal et al., 2002). For example, the 
urban landscape of Los Angeles can be described as a mosaic 
of census tracts. The census tract in this case can be thought of 
as a patch that is relatively homogeneous in terms of social and 
physical conditions. Similarly, at a larger scale, a census tract 
can be viewed as a mosaic (or landscape) of its own, consisting 
of smaller patches of land cover classes represented by a 
collection of pixels (or grid cells) in a remotely sensed image. 
While individual pixels (the construction blocks of patches) 
possess uniform spatial characteristics (e.g., identical size, 
perimeter, and shape), the aggregation of these pixels provides 
a rich set of properties. These properties depend on whether 
the pixels are aggregated over a single land cover class (patch 
type) or multiple classes, and whether the aggregation is 
considered within a specified census tract. Landscape metrics 
make use of these properties to reveal the spatial character and 
distribution of patches, and thus to quantify landscape patterns 
(O'Neill et al., 1988; McGarigal et al., 2002). 
The fractions produced by MESMA are typically represented in 
terms of the percentage occupied by a fractional class of land 
cover within a pixel. However, landscape metrics operate upon 
the assumption that individual patches are maximally variable 
externally and minimally variable internally. Therefore, before 
landscape metrics were applied, the fractional image had to be 
reclassified such that each pixel within any census tract 
corresponded to one, and only one, class of land cover. In this 



regard, the use of landscape metrics requires a ‘hard’ view of 
classification as opposed to the ‘soft’ view represented by 
MESMA. However, the difference between conventional per-
pixel classification techniques and the method we utilized lies 
in the way in which the discrete classes of land cover were 
derived. While conventional techniques are typically applied to 
the radiance or reflectance values directly, the results of 
MEMSA were utilized here to perform the ‘hard’ 
classification. In this sense, the discrete per-pixel classification 
operated in a subservient role to the sub-pixel analysis of the 
imagery – an approach that has been shown by other studies to 
produce more reliable and accurate classification of imagery 
(Roberts et al., 1998a; Rashed et al., 2001). 
To do so, each pixel was screened in terms of the fractional 
class values assigned to it. If a fractional value (i.e., the 
percentage of any individual class) within a pixel was equal to 
or greater than 60%, that class was then assigned to this pixel. 
The threshold of 60% was arbitrarily chosen, assuming that 
when a pixel meets this condition for a certain fractional value, 
then it is most likely that this pixel can be classified under that 
land cover class. When fraction values within a pixel failed to 
meet this criterion, then a decision role was applied to assign a 
class to that pixel according to which class the majority of 
neighborhood pixels within a 3 X 3 window were assigned to. 
This means that there may exist up to four classes (or patch 
types) within any census tracts: vegetation, soil, shade, and 
impervious surface. 
The next step was to select a subset of landscape metrics that 
could be applied to measure the spatial properties of census 
tracts in Los Angeles, either in terms of the configuration of 
patches of pixels of a given land cover class within a census 
tract (i.e., class level metrics in which the landscape of interest 
is a specific land cover class within a census tract), or the 
configurations of patches of all the four classes that census 
tract may be composed of (i.e., census tract level metrics in 
which the landscape of interest is the census tract itself). 
Tables 1 and 2 list the subsets of metrics that have been used 
on either the land cover class or census tract levels. As shown 
in the tables, the same metric may measure different properties 
based on the level at which it is applied. For example, the PD 
metric in Table 1 measures the density of patches within an 
individual land cover class within a census tract, while in 
Table 2 it measures the density of all patches from all classes 
within that tract. On the other hand, other metrics are unique to 
the level at which they applied. Examples of these are the 
COHESION metric in Table 1 that is used to measure the 
connectivity of patches at the land cover class level, and the 
SIDI metric that measures the diversity of all land cover classes 
at the census tract level. Finally, there are metrics that are 
essentially measuring different properties in the same way at 
the same level such as CONTAG and AI metrics in Table 2. 
CONTAG measures the aggregation of individual pixels of 
different classes at the census tract level whereas AI measures 
the aggregation of patches of pixels of different classes at the 
same level. Thus, we should expect that some of the measures 
resulting from these metrics would be highly correlated with 
each other. Despite this redundancy, however, we have deemed 
it important to test them all since each one points to a slightly 
different aspect of the spatial structure of urban places. The 
calculation of all these metrics was done through a software 
package called FRAGSTAT (version 3), designed to compute a 
wide variety of landscape metrics for categorical map patterns 
(McGarigal et al., 2002). 

Table 1: Description of landscape metrics applied at the land 
cover class level within a census tract 

Class Metrics 
Metric Property Measured 
PD - Patch density Areal composition 
LPI - Largest patch index Areal composition 
PAFRAC - Perimeter-Area Fractal Shape complexity 
Dimension 
PLADJ -  Percentage of Like Degree of aggregation  of land cover 
Adjacencies class 

Degree of aggregation  of land cover AI – Index of Aggregation class 
IJI - Interspersion and Juxtaposition Degree of interspersion or intermixing 
Index of land cover class 
DIVISION Diversity of land cover class 

Physical connectedness of the land COHESION cover class 

Table 2: Description of landscape metrics applied at the census 
tract level 

Landscape Metrics 
Metric Property Measured 
PD - Patch density Areal composition 
LPI - Largest patch index Areal composition 
PAFRAC - Perimeter-Area Fractal Shape complexity 
Dimension 

Overall fragmentation of land cover CONTAG classes 
Degree of aggregation  of land cover AI – Index of Aggregation classes 

IJI - Interspersion and Juxtaposition Degree of interspersion or intermixing 
Index of land cover classes 
SIDI - Simpson's Diversity Index Diversity of land cover classes 

A final remark that needs to be emphasized at this point is 
concerned with the relationship between those measures 
derived from the normalization of MESMA fractions and those 
produced by landscape metrics. A normalized MESMA 
measure of vegetation represents the average factional value of 
vegetation land cover within pixels belonging to a census tract. 
This average value, however, does not tell us about the density 
of vegetated pixels and how they are arranged within a census 
tract (e.g., fragmented or aggregated, connected or 
disconnected). The latter information is conveyed through the 
measures calculated by landscape metrics that may suffer from 
a drawback regarding the assumption of discrete pixels. Thus, 
both normalized MESMA fraction and results produced by 
landscape metrics represent different aspects of the physical 
settings of a census tract and should be looked at as being a 
complementary to, rather than a replacement of, each other. 

2.5 Spatial filtering of variables 

An important issue we had to address before we employ any 
statistical models was related to the implications of spatial 
autocorrelation on the results of these models. Spatial 
autocorrelation directly results from Tobler’s (1979) ‘First Law 
of Geography’ that everything is related to everything else, but 
near things are more related than distant things. This implies 
that data aggregated at particular spatial units such as census 
tracts are more similar to data for other nearby spatial units 
than they are to more distant spatial units (Getis and Ord, 
1992). Spatial autocorrelation may be caused by measurement 
problems such as the arbitrary delineation of census tract 
boundaries, or by the problem of spatial aggregation, or by the 
presence of spatial externalities (Getis, 1999). Cliff and Ord 
(1981) identify two general approaches for resolving these 



problems: (1) filtering spatially autocorrelated data to
“remove” (or really to account for) spatial autocorrelation, or 
(2) modifying statistical models to accommodate spatial 
autocorrelation (such as spatially autoregressive models).  
We utilized a method for spatial filtering suggested by Getis 
(1995). This spatial filtering technique incorporates spatial 
component variables into an ordinary least-squares (OLS) 
linear regression analysis in order to remedy the problems 
associated with spatially autocorrelated variables. Remediation 
does not involve removing all evidence of space, but rather 
involves extracting the spatially autocorrelated portion of each 
of the variables in the regression model and then reintroducing 
the spatial portion as a separate factor (Getis, 1995; Scott, 
1999). By solving the OLS regression model with the filtered 
and spatial components of the variables decomposed, the 
spatial autocorrelation is removed from the residuals and 
incorporated into the model to help predict variation in the 
dependent variable. Summing the absolute values of the 
statistically significant standardized beta coefficients then 
allows us to determine the proportion of explained variation 
that is due to the spatial component (where you are), whereas 
the remainder of the explained variation is accounted for by the 
filtered (non-spatial) component. This is because the
standardized beta coefficients in regression analysis represent 
the partial correlation coefficient of that independent variable 
to the dependent variable, controlling for all other independent 
variables in the equation. The ratio of the square of the beta 
coefficients for any two independent variables then gives us a 
quantitative measure of the relative contribution of each 
variable to the prediction of the dependent variable.  

 

 

2.6 Statistical Models 

The first model utilized was for testing the null hypothesis that 
the index of wealth (IW), used as a proxy for access to 
resources, was not significantly correlated with the index of 
higher vulnerability (IV) calculated for the study area of Los 
Angeles. Besides testing the basic hypothesis of this research, 
two regression models were employed to further examine the 
relationship between wealth, vulnerability, and the remotely 
sensed measures. The first model was a step-wise OLS 
regression model, which employed IW as a dependent variable. 
The purpose of this OLS model was to examine the extent to 
which wealth (as a proxy for social vulnerability) can be 
predicted exclusively by measures derived from remote sensing 
to describe the physical characteristics of an urban 
environment. The independent variables of that model 
included: (1) a set of normalized MESMA fractional measures 
(i.e., vegetation, soil, impervious surface, and shade) 
aggregated by the census tract, and (2) a set of second-order 
measures derived from MESMA fractions using landscape 
metrics (listed previously in Tables 1 and 2). The format of 
this model, after applying the spatial filtering, was as follows: 

The second model was a binary logistic regression model that 
employed IV as a dependent variable. Logistic regression was 
used in this part of the analysis because of the ordinal nature of 
the fuzzy measure of vulnerability that allowed for a binary 
division of the dependent variable into high (1) and low (0) 
using a threshold value. In such a situation, logistic regression 

                   

Wealth (IW) = (normalized MESMA fractions filtered) + 
(normalized MESMA fractions spatial) + (landscape metrics 
filtered) + (landscape metrics spatial) + error  (1) 

is useful as it helps us examine the presence or absence of 
higher vulnerability based on values of a set of explanatory 
variables. The explanatory variables for this model included 
the index of wealth, as well as a set of remotely sensed 
measures that were statistically associated with wealth in the 
OLS regression models. The general form of this model was: 

Logit (Pi) = log (Pi / (1 - Pi)) = a + b Xi                             (2) 

where i represents the binary value of vulnerability at a census 
tract; Pi the conditional probability of Yi given Xi; a is the 
intercept; b is the vector of slope parameters; and Xi is the 
vector of explanatory variables (Wealth and remotely sensed 
measures). 

3. RESULTS 

3.1 Results of correlation between vulnerability and 
wealth 

Table 3 shows Pearson’s correlation coefficients between 
vulnerability and wealth. The table reports a correlation value 
of 0.11 between vulnerability (IV) and wealth (IW), indicating 
a low, but nonetheless statistically significant negative 
correlation at the 0.01 level. This leads us to reject the null 
hypothesis that wealth, as a proxy for social vulnerability, is 
not associated with vulnerability values estimated through the 
simulation of biophysical risks in urban areas. Another 
interesting finding in Table 3 is related to the correlation 
between the IW and the spatial portion of the IV. The results 
indicate that only the spatial components in the two indexes 
were significantly correlated, suggesting more evidence for the 
importance of ‘where you are’ in the distribution of 
vulnerability in Los Angeles. While these correlation values 
were not as high as one may have anticipated, the significance 
of such results becomes more apparent in light of the following 
facts. 
First, the IV and IW represent the results of two totally 
independent methods for measuring vulnerability. The values 
of the IW were calculated exclusively based on the income 
information from the 1990 census, weighted by race and age. 
The values of the IV were derived from simulating a number of 
earthquake events in HAZUS, in which damage losses were 
calculated as a function of building types and soil conditions 
without taking any social factors into account. The implication 
of this is that the most vulnerable physical elements do not 
always overlap with the most vulnerable populations within 
Los Angeles. This finding is important because it is almost 
identical to what Cutter et al. (2000) found from an analysis 
conducted in Georgetown County, South Carolina, suggesting a 
pattern that is likely to be common in other urban places in the 
United States. 
Second, the calculations of IV and IW have been based on the 
physical and social characteristics, respectively, of census 
tracts in Los Angeles as of 1990. In this regard, these 
calculations implicitly assume a correspondence between 
physical and social change within the urban areas. However, 
some previous studies (e.g., Scott, 1999; Weeks et al., 2000) 
have suggested the existence of a lag between change in the 
social environment and the corresponding change that may 
occur in the physical environment, with the former occurring 
first. In fact, Scott (1999, pp: 111-112), in the context of her 
analysis of accessibility to jobs in Los Angeles, showed that the 
census tracts at the periphery of Los Angeles County (where 



higher values of IV exist) were classified as low income tracts 
in the 1980 census. However, those tracts themselves became 
high income in 1990. This implies a rapid social change that 
occurred through the county in the 1980s that might not have 
been reflected yet by a physical change in 1990. Thus, one can 
put forward a proposition that a wealth index based on the 
1980 census data might have done a better job than the index 
used here, which was based on the 1990 census data. 
Given these limitations, it can be suggested that the 
statistically significant correlation results noted above 
represent, in fact, strong evidence of a possible causal linkage 
between the physical and social conditions of urban places with 
regard to vulnerability. This line of reasoning is further 
investigated through the results of the regression models 
reported in the following subsection. 

Table 3: Results of correlation analysis between vulnerability 
and wealth 

“IV” "IV_sp" "IV_f" 

"IW" Pearson Correlation -0.111** -0.149** 0.016 

Sig. (2-tailed) .000 .000 .531 

"IW_sp" Pearson Correlation -0.112** -0.141** 0.008 

Sig. (2-tailed) .000 .000 .769 

"IW_f" Pearson Correlation 0.045 -0.068** 0.013 
Sig. (2-tailed) .073 .007 .601 

N 1561 1561 1561 

** Correlation is significant at the 0.01 level (2-tailed) 

3.2 Results of regression models

         Two regression models were employed in order to 
examine whether remotely sensed measures can be used in 
conjunction with social variables to explain the variation in 
vulnerability. The first model was a step-wise OLS regression 
model that employed the index of wealth as a dependent 
variable, and a total of 40 independent variables (4 normalized 
MESMA variables, 8 variables resulting from applying 
landscape metrics at the census tract level, and 28 variables 
resulting from applying the metrics at the 4 land cover class 
levels). Before running the model, the technique of spatial 
filtering was first utilized to decompose spatially 
autocorrelated independent variables into their spatial and non-
spatial components. The second model built on the results on 
the first model and applied logistic regression employing the 
index of vulnerability as a dependent variable, and wealth and 
remotely sensed measures as independent variables. 
The results of the first model are shown in Table 4, in which 
only statically significant predictors (at the 0.05 level) are 
reported. The R value for this model was 0.767, with an 
adjusted R 2 of 0.586. An examination of the residuals showed 
they were not spatially autocorrelated and exhibited no 
heteroscedasticity. Also, the results of collinearity diagnostic 
indicated that the independent variables had scored low (< 9) 
in the condition index. The results show that 4 out of 40 
variables utilized emerged as statistically significant predictors 
of the index of wealth. Among these, two were normalized 
MESMA measures (vegetation and impervious surface) and 
two were derived from landscape metrics applied at the land 
cover class level within census tracts (PD_Imp and IJI-shd). 
Considering the absolute values of the statistically significant 
standardized β  coefficients, we can determine that MESMA 

measures have accounted for about 26% of the explained 
variation in the wealth, most of which was related to variation 
in vegetation. The measures derived from landscape metrics 
accounted for about 74%. On the other hand, the spatial 
component in all variables accounted for about 52% of the 
explained variation in the wealth, while the filtered component 
accounted for the remaining 48%. 
The results in Table 4 indicate that the most important 
predictors of the wealth index were the spatial and non-spatial 
components of PD_impervious, a landscape metric measure 
that describes the density of patches within the impervious 
land cover class in a census tract. The results show that 
although the density of impervious surface within a census 
tract is indicative of higher wealth, the abundance of 
impervious surface fractions derived from MESMA is 
negatively associated with wealth.  This interesting finding 
highlights the value of applying landscape metrics to MESMA 
measures to reveal certain physical patterns within an urban 
place that can be related to the social characteristics of 
population in that place and may not otherwise be shown by 
only relying on the measurement of the physical composition in 
that place. The results in Table 4 also show vegetation as a 
strong predictor of wealth, with higher vegetation abundance 
associated with the more affluent census tracts – a finding that 
has been reported repeatedly in other urban settings (e.g. 
Ryznar, 1998; Rashed et al., 2001; Small, 2001). Finally, the 
model indicates that the IJI_shade, another landscape metric 
applied at the land cover class level, has emerged as a 
significant predictor of higher wealth. IJI measures the degree 
of interspersion or intermixing of patches within a land cover 
class. A lower IJI value indicates that patches belonging to a 
land cover class within a census tract are more aggregated and 
less fragmented. Likewise, if the land cover class in a census 
tract is dominated by a relatively greater number of small and 
highly fragmented classes, the IJI value would be high. The 
results in Table 4 suggest that wealth increases with the 
increase of fragmentation in the shade within a census tract. 
Since shade has been used in the analysis as a proxy for 
building heights, one can conclude that tracts with low-rise 
buildings (e.g., single family housing) would be characterized 
with higher IJI values calculated for the shade. On the other 
hand, tracts with high-rise building will possess lower IJI 
values, and in Los Angeles these areas are likely to score lower 
on the wealth index as in the case of downtown Los Angeles. 
Thus, in general, the results shown in Table 4 affirm the 
proposition of this research that remotely sensed data can be 
used as a proxy for urban spatial structure that can then be 
used to explain variation in wealth, and hence social 
vulnerability.  
The second regression model utilized was a binary logistic 
model that used the index of vulnerability (IV) as a dependent 
variable, and wealth and the remotely sensed measures that 
emerged as statistically significant predictors of the wealth 
index in the OLS regression model. The results of the model 
are shown in Table 5. The threshold used to determine the 
binary values of the IV was based on the mean value of the 
index. Those values that were above the mean were assigned 1 
indicating higher vulnerability, and those values that were 
equal to or less than the mean were assigned 0 indicating lower 
vulnerability. The model was also tested using other thresholds 
and the results were generally consistent with those listed in 
Table 5. The overall correct prediction of the model was about 



63%, with 15.34 chi square value at the 95% level of
significance.  
The results show that three out of the four remotely sensed 
variables utilize emerged as statistically significant predictors 
of higher vulnerability. The strongest among these predictors 
was again the landscape metric-based measure,
PD_impervious, the higher values of which were shown to
increase the odds of being highly vulnerable by a factor of
2.01, holding all other variables constant.  On the other hand, 
as hypothesized, being in the higher wealth category (wealth 4) 
reduces the odds (by a factor of 0.77) of being in the high 
vulnerable category. This suggests that the wealth (social)
effect is independent of the remotely sensed (physical) effect, 
and that both need to be taken into account if we are to
understand the vulnerability of place. 

 

 
 
 

 

 

Table 4: Spatially filtered OLS regression for the index of 
wealth (IW) 

Variable Unstandardized 
Coefficient Standardized β t Significance of t

Dependent Variable IW 

Impervious_f

IJI_Shade_sp

Vegetation_f 

Impervious_sp 

IJI-Shadei_f

PD_Impervious_f

PD_Impervious_sp

Vegetation_sp 

 -2177.326 

 526.144 

1748.643 

-877.699 

 206.075 

 1532.003 

 1506.867 

1475.475 

-0.0361 

0.157 

0.184 

-0.073 

0.075 

0.394 

0.340 

0.055 

-14.763 

5.777 

8.959 

-2.980 

2.854 

11.253 

10.008 

2.228 

0.000

0.000

0.000

0.003

0.004

0.000 

0.000 

0.000

R 

Adjusted R 2 

z(I) For residuals 

N

Note: see text for an e

0.767 

0.586 

0.89 

 1561 

xplanation of the variables 

 

 

 

 

 

 

Table 5: Logistic regression for the index of vulnerability (IV) 
Variable β Wald Significance EXP(β) 

Dependent Variable IV 

Impervious 0.1390 0.9342 0.3338 1.1491

Vegetation 0.6273 21.1980 0.000 1.8725 

IJI_Shade 0.3634 5.8804 0.0164 1.4838

PD_Impervious 0.6987 19.6991 0.000 2.0112

Wealth 1 -0.0723 0.3239 0.5692 0.9303 

Wealth 2 0.6018 28.5415 0.0000 1.8253 

Wealth 3 0.3628 11.5632 0.0007 1.4451 

Wealth 4 -0.2658 5.6609 0.0180 0.7666 

Overall percent correct 63.36% 

Chi Square 15.3524 0.0317 

Nagelkerke R 2 0.102  

N 1561 

Note: see text for an explanation of the variables 

 

 

 

4. DISCUSSION 

The objective of this paper was two fold. First, to test the basic 
hypothesis that social vulnerability is reflected by aspects from 
the physical environment in urban places. Second, to examine 
the proposition that remote sensing can provide us a 
quantitative means to describe and assess aspects related to 
urban spatial structure that influence vulnerability.  

financial credit, and stable employment had generally secured 
them against the destitution that befell poor families exposed 
to the same event (Bolin and Stanford, 1999, pp. 92). 
Accordingly, a distinction can be drawn between two patterns 
of vulnerability: persistent (or chronic) vulnerability and 
situational vulnerability (Bolin and Stanford, 1998). Persistent 
vulnerability connects to social forces that produce 
economically, ethnically, and culturally marginalized groups. 
Situational vulnerability, on the other hand, occurs when some 
population groups (include wealthy and financially secured 
ones) become increasingly at risk in the face of calamity. This 
might happen due to a combination of circumstances related to 
their jobs, choice of housing, etc, but does not necessarily need 
to be related to social or demographic factors. That is, in 
situational vulnerability, a household has the option to choose 
not to live in a hazardous place. In the persistent vulnerability, 
the social factor is much more noticeable while the physical 
aspect of vulnerability is implicit. The situational vulnerability 
is quite the opposite case, in which the physical aspect of 
vulnerability becomes more apparent and the social aspect 
becomes implicit. It is our contention that these patterns of 
persistent and situational vulnerabilities were represented 
respectively by the index of wealth (IW) and the index of 

To address the first objective, we examined the correlation 
between the wealth index and vulnerability. Vulnerability 
values were derived from an index of higher vulnerability for 
Los Angeles County, produced by Rashed and Weeks (2003). 
The wealth index was calculated for Los Angeles from 
information about income, weighted by race and age, and used 
in this research as a proxy for access to resources that is 
considered by many researchers as a major determinant of 
social vulnerability. The results showed a statistically 
significant negative correlation between the two indexes, 
though not high enough to conclude that the wealth can be 
taken as a sole indicator of vulnerability. Several reasons were 
listed above to explain why this difference has occurred. 
Nevertheless, in light of the apparent difference between the 
spatial distributions of values in the two indexes, an obvious 
question arises: how do these results conform to the theories of 
vulnerability found in the literature? The answer to this 
question can be discussed in light of the relationship between 
access to resources and vulnerability. This relationship was 
previously examined by researchers in the context of disasters 
in developing countries (e.g., Wisner, 1993; Blaikie et al., 
1994). These studies measured access to resources by the level 
of poverty (as opposed to the concept of wealth utilized here) 
and showed that the poor often live in less safe structures that 
are more likely to be damaged or destroyed by earthquake 
hazards. In developing countries, spatial and physical aspects 
of vulnerability tend to be much more pronounced because the 
poor are often forced to live and work persistently in hazardous 
areas (Hewitt, 1997). In contrast, socially and economically 
marginalized populations in the US do not necessarily live in 
areas at greatest risk of natural hazards (Bolin and Stanford, 
1999). Indeed, the wealthy people may even choose to live in 
physically hazardous settings such as earthquake-prone 
hillsides in California (Davis, 1998). Therefore, vulnerability 
in this case has little to do with systematic differences between 
the rich and poor in terms of their exposure to the earthquake. 
Bolin and Stanford (1998, pp. 175-177), in their analysis of the 
impacts of the 1994 Northridge earthquake in Los Angeles, 
showed that while wealthy households might have suffered 
from losses in a hazard event, their property insurance, assets, 



vulnerability (IV) produced by the simulation of physical 
damage resulting from earthquake scenarios. The mismatch of 
the spatial distribution between the two indexes implies some 
missing information related either to social vulnerability (in 
the case of the IW) or physical vulnerability (in the case of IV).   
The second objective of this paper was concerned with the 
utility of remote sensing for providing measures that can be 
used as surrogates for social vulnerability. To address this 
objective, we employed two regression models in which both 
first and second-ordered remotely sensed measures were 
utilized as independent variables. These first and second-
ordered measures were respectively represented by normalized 
MESMA fractions and measures produced by landscape 
metrics. The former set of variables mainly described the 
physical composition of the urban place. The latter set of 
variables were more related to the configuration (or the 
physical arrangement) of land cover classes within census 
tracts. The results of the first model showed that the remotely 
sensed variables accounted for about 57% of the explained 
variation in the IW. The results of the second model showed 
that the remotely sensed variables emerged as significant 
predictors of the IV.  The moral of these results is that remote 
sensing data can be used to derive information about the 
physical composition and spatial structure of the built 
environment in an urban place. This information reflects 
aspects of the social environment that will be reflected in the 
demography and culture of people. The built environment, 
represented by the arrangement of land cover classes, then 
interacts with the socioeconomic environment (measured, at a 
minimum, by income, race, and ethnicity) to produce the urban 
environment. The urban environment then creates a difference 
in people’s vulnerability by influencing the volume and 
intensity of social interaction that in turn has an implication on 
the opportunities that exist for different social groups to access 
resources. 
There is no doubt that a small number of statistical models 
based on one unique urban area in a developed country cannot 
be taken as a foundation to build  a grand theory of 
vulnerability to disasters nor to explain how vulnerability is 
reflected in the urban spatial structure. But the results of these 
models are still sufficient to draw the attention to the utility of 
remote sensing and the way it can help us obtain information 
that address core issues of the social sciences such as social 
vulnerability. The results of this research have shown how 
remote sensing provides us with quantitative measures of the 
urban spatial structure that are indicative of social vulnerability 
and comparable from place to place. Recognition of this will 
help to improve the statistical association between social and 
physical vulnerabilities, and to carry out assessments that are 
comparable across spatial (and temporal) scales. 

5. CONCLUSIONS 

A major theme of this paper is that the analysis of vulnerability 
can exploit the capabilities of remote sensing to obtain 
information that might not be measurable in other ways. In this 
sense, the study builds on recent pioneering studies that 
attempt to take remote sensing applications beyond their 
current use in applied sciences, toward applications that 
address concerns of the social sciences (e.g., Liverman 1998). 
Yet, our intention is not only to introduce urban remote sensing 
as a meeting point for the social and physical sciences, but also 
to show that social applications of remote sensing can inform 
the research agenda of the urban remote sensing arena. 

In this regard, one of the most important findings of this 
research is the realization that the spectral properties of 
conventional imagery such as Landsat TM are ‘still’ really 
useful in detecting the extent and morphology of urban land 
cover. Over the past few years, there has been a trend in the 
literature promoting the idea that further improvements in the 
spatial precision of satellite instrument is the only way of 
deriving better information for urban analysis. Our findings 
indicate that improved remotely sensed measures are not only a 
question of better spatial resolution. Rather, it is an intellectual 
issue which lies in bridging the gap between the two fields of 
remote sensing and urban analysis. This is not to say that new 
imagery with better spatial resolution are not important, but it 
is to stress the need to incorporate remote sensing within a 
theoretical framework that reflects that nature of urban 
phenomena in which resolution is only one of many other 
aspects that need to be considered in the analysis. 
We have shown how the spectral characteristics of a Landsat 
TM image can provide detailed interpretation of urban form 
when we move beyond conventional, per-pixel classifications 
of imagery to the spectral unmixing approach. We have also 
shown the usefulness for using landscape metrics to provide 
information about the configuration and structures of urban 
morphology that supplement information about direct land 
cover classes derived from the imagery. The moral of this is 
that further progress of urban remote sensing is dependent on 
the thinking of new ways of using existing remotely sensed 
data to inform our understanding of the spatial distributions of 
urban phenomena, as it is on new imagery with better 
capabilities. Before new datasets are introduced, there is a 
need to develop a sold understanding of the spectral 
characteristics of the wide range of urban features and how 
they are affected by the changing spatial resolution of imagery. 
There is thus a need to build a solid theoretical understanding 
of the relationship between the pixel size and the recognition 
of the structural patterns of urban features. It is only through 
including these and other similar questions in the current 
agenda of urban remote sensing that we can have a full 
appreciation of the capabilities of existing imagery. Then, we 
will be in a position to set a basis for assessing data 
requirements for future sensors that can foster additional 
understating of urban systems. 
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